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COMPUTED STRUCTURE OF NEAR-COHERENT TWIN 
BOUNDARIES COMPARED WITH TEM OBSERVATIONS 

J. TH. M. DE HOSSON,’ F. W. SCHAPINK,’ J. R. HERINGA’ and J. J. C. HAMELINK’ 
‘Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 
AG Groningen, The Netherlands and ‘Laboratory of Metallurgy, Delft University of Technology, 

Rotterdamseweg 137, 2628 AL Delft, The Netherlands 

(Receiwd 5 July 1985; in rerised,form IO September 1985) 

Abstract-The structure of a near-coherent twin boundary in a Au bicrystal was investigated using 
transmission electron microscopy. Upon annealing the bicrystal, a low angle boundary and a parallel 
coherent twin boundary merged to form a near-coherent twin boundary with a deviation of 0.45’ from 
the exact twin orientation. In the near-coherent twin boundary a dislocation network has been observed 
with a characteristic six-star pattern, while in some small areas the network has a triangular shape which 
is closely related to the six-star pattern. In an effort to reproduce these patterns in a computer simulation 
study, the atomic configurations in (111) twist boundaries close to the twin orientation were calculated 
(X37, C61, X91, X.127, X169). For a given twist boundary and interatomic potential both six-star and 
triangular patterns were obtained. The triangular structure appeared to be energetically much more 
favourable. independent of the various interatomic potentials employed. 

R&wm&Nous avons Ctudie par microscopic electronique en transmision la structure d’un joint de macle 
presque coherent dans un bicristal d’or. Au tours d’un recuit du bicristal, un sous-joint et un joint de 
macle coherent parallele fusionnent pour former un joint de macle presque coherent, avec une deviation 
de 0,45” par rapport a I’orientation de macle exacte. Dam le joint de macle presque coherent, nous avons 
observe un reseau de dislocations en forme d’etoile a six branches, alors que dans d’autres regions, le 
reseau a une forme triangulaire qui est ttroitement liee a I’etoile a six branches. Afin d’essayer de 
reproduire ces configurations dans une etude par simulation sur ordinateur. nous avons calcule les 
configurations atomiques dans des joints de torsion (111) proches de I’orientation de macle (X37, C61, 
C91, 2127, X169). Pour un joint de torsion et un potentiel interatomique don& nous avons obtenu les 
configurations en etoile et en triangle. La structure triangulaire ttait energetiquement beaucoup plus 
favorable, quels que soient les potentiels interatomiques utilises. 

Zusammenfassung-Die Struktur einer Zwillingskorngrenze in der Nahe der Koharenz wurde in einem 
Au-Bikristall elektronenmikroskopisch untersucht. Nach der Auslagerung des Bikristalles reagierten eine 
Kleinwinkelkorngrenze und eine parallele koharente Zwillingskorngrenze zu einer Zwillingskorngrenze 
nahe der Koharenz mit einer Abweichung von 0.45” von der exakten Zwillingsorientierung. In dieser 
Korngrenze wurde eine Versetzungsnetzwerk beobachtet, welches ein charakteristisches sechseckiges 
Muster aufwies; in einigen kleinen Bereichen hat das Netzwerk eine eher dreieckige, der sechseckigen 
Bhnlich Struktur. Urn diese Strukturen in einem Computermodell zu reproduzieren, wurden die 
Atomkonfigurationen in (11 I) Drill-Korngrenzen in der Nlhe der Zwillingsorientierung berechnet (X.37, 
X61, X91, X127, X169). Fur eine gegebene Drill-Korngrenze und ein gegebenes interatomares Potential 
wurden sowohl sechs- als such dreieckige Muster erhalten. Die dreieckige Anordnung ist energetisch vie1 
stabiler, unabhangig vom benutzten interatomaren Potential. 

1. INTRODUCTION 

In contrast to dislocations, grain boundaries do not 
possess a long range stress field. As a consequence, 
their effects on materials behaviour are determined by 
their local atomic configurations. Over the past de- 
cades, these local atomic configurations have been 
investigated with increasing frequency, using com- 
puter simulation techniques. Since important aspects 
of grain boundary behaviour are complex phenom- 
ena, which tend to be resistant to analytical treat- 

ment, computer simulations have become very useful 
in understanding some of the basic concepts. For a 
review reference is made to [l, 21. 

Comparing the computational results with experi- 
mental data is often a difficult task because the core 
regions of grain boundaries cannot reliably be in- 

vestigated experimentally. In the present in- 
vestigation, this problem is solved by carrying the 
detailed atomic calculation of grain boundary struc- 
tures to the point where they qualitatively reveal the 
observed structures. 

Direct motivation for a computer simulation study 
stems from the experimental investigation of the 
structure in (111) Au bicrystals using transmission 
electron microscopy. In particular, the in situ an- 
nealing of a bicrystal, containing a low angle twist 
boundary and at least one coherent twin boundary 
was studied by TEM (Section 2). The coalescence of 
these boundaries led predominantly to the formation 
of characteristic six-star dislocation networks consis- 
ting of three parallel sets of Shockley partial dis- 
locations with associated steps in the twin boundary. 
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Low-angle ttlt boundary Low-angle twist boundary 

Crystal I 

Crystal II 

Coherent twin boundary 

Fig. 1. Schematic side view of the specimen, showing the various grain boundaries present. 

It suggests that the most stable atomic configuration 
is a micro-faceted configuration. So far, faceting has 
mainly been studied in tilt boundaries [3,4]. In an 
effort to reproduce the observed six-star patterns, the 
atomic configurations in (111) twist boundaries close 
to the twin misorientation were calculated. The com- 
putational results are described in Section 3 and 
discussed in Section 4 in comparison with experi- 
ments. 

2. TEM OBSERVATIONS 

The Au bicrystals used in this investigation were 

prepared from thin (111) Au single crytals according 
to the method described elsewhere [5]. In Fig. 1 
schematic view of the specimen is depicted, showing 
the various boundaries present. Crystal I contains a 
number of areas, surrounded by low angle tilt bound- 
aries. In crystal II a number of coherent twin bound- 
aries are present parallel to the surface. Upon an- 
nealing at 475 K one of these twin boundaries, 
together with the original low angle twist boundary, 
forms a near -coherent twin boundary with a misori- 
entation of 0.9” and 0.45” around the common [ 1111 
axis in areas B and C, respectively. Regions B and C 
are separated by a low-angle vertical tilt boundary 

In area C of the near-coherent twin boundary a 
dislocation network is observed which has the shape 

accommodating the misfit difference, as discussed in 

of a six-star pattern. Weak-beam images were anal- 
ysed for the determination of the Burgers vectors and 

more detail elsewhere [6]. 

the exact shape of the dislocation network. The 
Burgers vectors are of the type l/6 (112) and the 
dislocation spacings are 16 nm and 32 nm for areas B 
and C, respectively. Figure 2 shows a dark-field 
micrograph of these areas taken with the matrix 
diffraction vector [TIT],. Because the orientation of 
the electron beam was near the [121], axis, no 
corresponding twin reflection (11 l), was excited and 
consequently no Moirk effects will complicate the 
image interpretation, as has been discussed by 
Hamelink and Schapink [7]. It is well known that a 
l/6 (112) dislocation in a coherent twin boundary 
causes a step in the boundary equal to one inter- 

planar spacing [8]. A sequence of steps introduced 
by a network of a/6( 112) dislocations has to satisfy 

Using the matrix reflection (i 1 T), a stepped bound- 

the condition that the average boundary normal 

ary configuration is imaged clearly as a black-grey- 

remains equal to the [ll I] normal of a coherent 
twin boundary. Using this concept Scott and Good- 
hew [9] have argued that the network will take the 

white contrast pattern (Fig. 2). At first sight, it is 

shape of a six-star pattern, consisting of a sequence 
of hexagonal and triangular areas such that the 

unexpected that these steps lead to such a strong 

triangular areas are located alternately on adjacent 
(111) planes above or below the plane of the hexa- 

contrast since these steps of 0.23 nm are very small 

gons. This configuration minimizes the occurrence of 
double steps in the boundary. 

relative to the extinction distance of 17 nm for a (111) 
reflection in Au at 120 kV. However, the presence of 
l/6 (112) dislocations in a near coherent twin bound- 
ary may produce a strong stacking fault-like contrast 
provided another parallel coherent twin boundary is 
present [5]. Focussed Riecke diffraction patterns 
confirmed that at least one coherent twin boundary 
is parallel to the near-coherent twin boundary. Dur- 
ing subsequent in situ annealing area B in Fig. 2 was 
found to move, caused by the migration of the 
vertical tilt boundaries as explained in [6]. 

Fig. 2. Dark-field micrograph, imaged with the (TIT), 
reflection. The steps in the grain boundary caused by the 
network are seen as a black-grey-white contrast. The labels 

of several areas correspond to those in Fig. 1. 
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3. COMPUTATIONAL METHOD AND RESULTS 

The method of calculating the “equilibrium” grain 

boundary structure consist essentially of a procedure 
for numerical integration of the equations of motion 
resulting from Newtonian mechanics. The first step in 
the simulation is the construction of a large com- 
putational block of interacting atoms. The atoms are 
released from an arbitrary, non-overlapping 
configuration within that computational block either 
from rest or with a random distribution of velocities. 
The relaxation of the individual atoms attempts to 
achieve a minimization of the energy of the system 
with respect to the positions of the atoms, assuming 
a suitable interatomic interaction function. The relax- 
ation procedure employed was a static one. This type 
of calculation carries out the minimization of the 
potential enery of the atoms and corresponds to the 
minimization of the internal energy, E, at T = 0 K. 

In principle one should be able to construct a 
realistic picture of the grainboundary structure using 
this method provided that the appropriate pair po- 
tential is accurately known. The accuracy of the 
potentials used to determine the forces between at- 

oms is essential to the success of a computer experi- 
ment. In our study we have applied two completely 
different sets of potentials for Al: Lennard-Jones 
6612 potential based on the sublimation energy for 
aluminum [IO] and a screened pseudopotential of Al 
(11). In the approximation of the central force, the 
internal energy E of a metallic system takes the form 

E = c’ 0) + 112 c#(rii, n,) (I) 
I., 

where u(Q,) is a potential dependent only on the 
average volume per ion, Q,, and Cp(rii, Q,) is the 
volume-dependent pair potential acting between ions 

at positions r, and r,. U(QJ is structure independent 
and represents the average energy of the conduction 

electrons in the metal It is responsible for the ob- 
served deviation from the Cauchy relation, Cu = C,, 
in cubic metals, In quantum mechanics, expression 
(I) is applicable if the perturbation expansion to the 
second order is sufficient and the higher order terms 
which lead to many-body forces can be neglected, i.e. 
a “weak” potential as a perturbation upon a chosen 
ground state. A well known technique for the con- 
struction of “weak” potentials is the pseudopotential 
method which is, however, only applicable to simple 
metals, The general feature of these potentials is the 
long range oscillatory behaviour. The Al-potential 
constructed along these lines is depicted in Fig. 3. The 
Lennard-Jones potential. shown in Fig. 4, behaves 
rather differently. It represents an empirical pair 
potential which incorporates the volume dependent 
terms. At large distances, the forces fall off as the 
seventh power of the distance, simulating the behav- 
iour of Van Der Waals forces between closed-shell 
atoms. As a result, this potential is particularly suited 
to describe rare gas solids, although not metals. In 
that sense the potential we used is rather a mathe- 

000 I if- 
-0021 I i I I I I 

015 03 06 09 

rinm) 

Fig. 3. Interatomic pair-potential for Al (pseudo-potential 
method [ 1 I]. 

matical representation of Al than a physical descrip- 
tion. It has to be emphasized that our atomistic study 
of grain boundaries is aimed at finding characteristic 
features of grain boundary structures, possibly de- 
pending on the mathematical form of the potential 
chosen, rather than at predicting structuraf details of 
grain boundary structures in Au. Since pseudo- 
potential theory is applicable to Al, two completely 
different sets of potentials are available for Al, in 
contrast to Au. 

015 02 03 04 05 

r (nm) 
Fig. 4. L-J potential for Al [IO] 



In the computations various initiaI configurations 
were ~~v~sti~at~. For the coincidence type boundary 
the original block of atoms is a geometri~a]Iy eon- 
strutted bkicrystal corresponding to a chosen value of 
C, rotation axis and boundary plane. 2: represents the 
r&procaI density of coincidence sites in the unit ceil 
of the coincidence site lattice. The atomic 
configurations in a number of (11 I) twist boundaries 
close to the twin orientation were calculated: C = 37, 
50.57”; X==6I, 52.66”; r: =9I, 53.99”; X = 127, 54.91”; 
Z = 169_ §5.59”+ The simulated part of the crystal 
consists of 8 {I 11) lattice planes. Fixed boundary 
conditions were applied in the direction perpendic- 
uiar to the grain boundary in the sense that on the top 
and bottom of the ~ornFu~tiona~ c&f at least two 
extra planes were kept in their starting configuration. 
We have aBowed for rigid tFans~atio~. In dir~t~ons 
parallel to the grain boundary, periodic boundary 
monitions were applied. The repeat distance was at 
Ieast equal to the repeat distance of the es1 cell in the 
boundary pIane. If the starting ~~~gurat~on was 
chosen to be the exact coincidence co~~gur~tio~, the 
fina atomistic structure after retaxation was found to 

be very similar to the initial configuration. The small 
d%erences could be d~monstra~d most cIearIy in a 
plot of the Fourier transform of a particular grain 
boundary structure fl2, 131. As a tgpicaI exampfe, the 
atomic configuration of the C. = 91 twist bo~nd~y is 
depicted in Fig. 5. Based upon the sttding of (1 I I) 

planes, this structure can be described by a triangular 
network of ShoekIey partial dis~o~~io~s, as indicated 
in Fig. 5. A rigid translation of one crystal with 
respect to the other in the starting confIguration may 
lead to a slightly different f&all structure. However, in 
$1 of these configurations one finds that some atoms 

in the lattice planes adjacent to the boundary are at 
a distance closer than the nearest neighbour distance 
in an undistorted f.c.c. crystal, (Upto G+/J~ vs i&J2 
for n.n. distance in f.c.c. lattice.) Consequently these 
atoms produce a farge co~tribuiio~ to the gram 
boundary energy due to the repulsion part in the 
atomic potential. In order to look for a lower energy 
co~~gur~tion and to avoid the close approach of 
atom pairs in the boundary a different procedure has 
been adopted. To this end, the lattice plane in the 
middIe of tbt: ~orn~utat~o~a~ block, has been divided 
in two separate sections, belonging to the upper and 
lower crystal, respectively, in such a way that no two 
atoms on different (I 11) planes are too close to each 
other in the starting con~~u~ation. The initial density 
of this particular plane was taken to be the same as 
the density of the other (I II). After relaxation, 
structures different fram those depicted in Fig. 5 were 
found, de~~d~ng on the atomic interaction function 
used. Figure 6 shows that one structure obtained for 
X = 91 closeiy resembies the six-star pattern observed 
ex~rirn~~tal~y for a much smaller deviation from the 
twm orientation (Fig. 2). The dashed lines in Fig. 6 
represent dislocation line segment lying between 
pIanes 0 and 1 j The stacking sequence of (Ill) planes 
in a cross section along P,P, in Fig. 6 is illustrated in 
Fig. 7, where the symbals I[ and 11 represent the 
ABC ,..andCBA + . . stacking sequence of the ft It) 
pfancs. Apparently the boundary pIane has a stepped 
character such that the double steps occur at the 
corners of the &riangIes in Fig. 6, in agreement with 
the experimentally observed structure of the network. 
There exists a close connection between the dis- 
location ~n~gu~tjoi~ of Figs 5 and 6. On ~orn~~~~~ 
both structures it is easily seen that a parallel shift of 



Fig. 6. Projected structure of the (I 11) planes Z = - I and 0 from a Z = 91 (0 = 53.99 ) twist boundary 
The structure has the form of a six-star pattern. 

the vertical dislocations in Fig. 6 over half the 
dislocation spacing transforms the configuration of 
Fig. 6 into the configuration of Fig. 5. As a result of 
such a shift to the left in Fig. 6, the dashed triangles 
in Fig. 6 disappear. This implies that the triangular 
structure of Fig. 5 consists entirely of single steps in 
the boundary. Apart from the six-star pattern ob- 
served in Fig. 2 there is evidence that in some areas 
the dislocation configuration is close to a triangular 
structure similar to that obtained in Fig. 5. 

The relative stability of different configurations for 
a given boundary depends on the interatomic poten- 
tial. Apart from the six-star pattern, the triangular 
structure was found, as depicted in Fig. 5. Using the 
pseudopotential for Al, this triangular structure ap- 
peared to have a lower internal energy than the 
six-star pattern structure for all the C boundaries 
under investigation. The internal energies of several 
boundary structures, triangular and six-star pattern, 

-2 
II II Il 

-1 
I II II 

I 

0 

I II I 1 

I I I 2 

0 0 0 

0 0 

0 0 0 

I II 

Fig. 7. Cross-section of the stacking of (111) planes in Fig. 
6, along P,P,. 

are plotted in Fig. 8. The various structures obtained 
for different coincidence orientations and interatomic 
potentials are summarized in Table 1. From this table 
it is seen that for a given twist boundary and inter- 
atomic potential two different structures can be ob- 

tained. If the cut-off of the interatomic potential is 
close to the second nearest neighbour the stacking 
fault energy is zero, and as a result even a third 
hexagonal pattern was found (Fig. 9). This 
configuration, however, is not relevant for twin 
boundary structures since it minimizes the stacking 
fault energy. 

0eoC 

064 

1 

0 

0 

0 

c . . 0.16 . 

54 55 56 57 58 

9” 

Fig. 8. Internal energies of the various boundary structures 
calculated using pseudo potential (0: triangular structure, 

0: six-star pattern.) 



Table 1 
Rotation Interatomic Computed 

z angle potential’ structuresb 

169 55.59 DRT 
LJ ;: :T, 

127 54.91 DRT 
:’ :T) LJ 
S: T 91 53.99 DRT 

LJ S, T 
61 52.66 DRT T 

LJ T 
37 50.57 DRT T 

l, T 

aDRT = Dagens-Rasolt-Taylor, cut-off = 1.00825 nm. 
LJ = Lennard-Jones, cut-off = 0.4824 nm. 

%, T represent a six-star and triangular pattern, 
respectively. 

CNot explicitly calculated. 

4. DISCUSSION AND CONCLUSIONS 

Employing a pseudo-potential for Al in a numer- 
ical relaxation procedure for the configuration of 
near-coherent twin boundaries, two different struc- 
tures have been generated. These structures can be 
described with the aid of a triangular and six-star 
pattern of Shockley partial dislocations as illustrated 
in Figs 5 and 6, respectively. It has been found that 
the computed energy of the triangular configuration 
is in general much lower than the energy of the 
six-star pattern as illustrated in Fig. 8. This may seem 
somewhat surprising, since inspection of Fig. 5 shows 
that the atoms in the neighbouring planes in the 
vicinity of the corners of the triangles are situated 
above each other. However, the energy difference 
between the two structures may be associated with 
the way in which the six-star pattern was generated. 

As described in the previous section, to obtain this 
pattern the central plane was divided among the two 
half crystals and this plane is still distorted after 
relaxation. Thus in the starting configuration the 
atoms within this plane are closer than in a well- 
ordered single crystal (111) plane, whereas the atoms 
lying on adjucent (111) planes are not much closer 
than the nearest neighbour distance in an f.c.c. lattice. 

Experimentally a six-star pattern has been found in 
near-coherent twin boundaries in Au, as shown in 
Fig. 2 and also observed by Scott and Goodhew [9]. 
With regard to these observations two remarks 
should be made. First, the deviation from the exact 
twin misorientation is about ten times as small com- 
pared with the computed structures. Because of the 
limited size of the computer-simulated bicrystal it was 
not possible to obtain structures closer to the experi- 
mentally observed structures. Secondly, upon close 
inspection of Fig. 2 it may be observed that there are 
small regions in area C in which the network almost 
appears as a triangular structure, characterized by the 
absence of area of “white” contrast. This suggests 
that perhaps the energy difference in Au between 
both structures is not very large, as may have been 
anticipated from the previously discussed simple 
transformation of one structure into the other. This 
transformation preserves the dislocation density in 
the boundary plane. Also both structures consist of 
single atomic steps in the boundary, in contrast to a 
hexagonal or lozenge-shaped network which intro- 
duce double steps in the boundary, thereby increasing 
the boundary energy [9]. 

As a general conclusion of this work it appears 
satisfactory that experimentally observed structures 
in near-coherent twin boundaries in Au could be 
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Fig. 9. Projected hexagonal structure of the (11 I) planes Z = - 1 and U from a Z = YI (0 = >j.YY-) twst 
boundary. 



DE HOSSON et al.: STRUCTURE OF NEAR-COHERENT TWIN BOUNDARIES 1057 

reproduced in a computer simulation study based 

upon suitable potentials for Al. However, detailed 
agreement has not been obtained, the main discrep- 
ancy being the large energy difference between the 
triangular structure and the six-star pattern found in 
the simulations. Although the computed energy 
difference depicted in Fig. 8 tends to decrease with 
decreasing deviation from the twin orientation, it is 
not expected that the two structures have nearly the 
same energy close to 60”, as suggested by the experi- 
ments. 

(0 

(ii) 

Possible reasons for this behaviour are 
the inadequacy of the potentials for the 
description of defect structures in Au. 
Within the central-force potential ap- 
proach possible volume expansion near 
the grain boundary has not been consid- 
ered. From references [ 14, 151 can be con- 
cluded that in metals a central-force con- 
stant volume approach cannot be 
successful in predicting detailed structural 
properties of interfaces. The pair potential 
approach works as far as trends are con- 
cerned and does not work, for obvious 
reasons, in any detailed total energy calcu- 
lation for a specific metallic system. 
The inaccuracy of the calculation, e.g. the 
effect of fixed boundary conditions in the 
Z-direction on the atomic configurations 
calculated. To get more reliable results, a 
larger range of the potential should be 
used. An extension in the range of the 
potential forces us to increase the number 
of atoms in the simulated cell. This in turn 
leads to a decrease in the precision with 
which the configuration and therefore the 

energy of the grain boundary can be calcu- 
lated [16]. 
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