2,140 research outputs found
New Charged Dilaton Solutions in 2+1 Dimensions and Solutions with Cylindrical Symmetry in 3+1 Dimensions
We report a new family of solutions to Einstein-Maxwell-dilaton gravity in
2+1 dimensions and Einstein-Maxwell gravity with cylindrical symmetry in 3+1
dimensions. A set of static charged solutions in 2+1 dimensions are obtained by
a compactification of charged solutions in 3+1 dimensions with cylindrical
symmetry. These solutions contain naked singularities for certain values of the
parameters considered. New rotating charged solutions in 2+1 dimensions and 3+1
dimensions are generated treating the static charged solutions as seed metrics
and performing transformations.Comment: Latex. No figure
Charged Cylindrical Collapse of Anisotropic Fluid
Following the scheme developed by Misner and Sharp, we discuss the dynamics
of gravitational collapse. For this purpose, an interior cylindrically
symmetric spacetime is matched to an exterior charged static cylindrically
symmetric spacetime using the Darmois matching conditions. Dynamical equations
are obtained with matter dissipating in the form of shear viscosity. The effect
of charge and dissipative quantities over the cylindrical collapse are studied.
Finally, we show that homogeneity in energy density and conformal flatness of
spacetime are necessary and sufficient for each other.Comment: 19 pages, accepted for publication in Gen. Relativ. Gra
Dynamics of Viscous Dissipative Plane Symmetric Gravitational Collapse
We present dynamical description of gravitational collapse in view of Misner
and Sharp's formalism. Matter under consideration is a complicated fluid
consistent with plane symmetry which we assume to undergo dissipation in the
form of heat flow, radiation, shear and bulk viscosity. Junction conditions are
studied for a general spacetime in the interior and Vaidya spacetime in the
exterior regions. Dynamical equations are obtained and coupled with causal
transport equations derived in context of Mller Israel Stewart
theory. The role of dissipative quantities over collapse is investigated.Comment: 17 pages, accepted for publication in Gen. Relativ. Gra
Electroweak Supersymmetry around the Electroweak Scale
Inspired by the phenomenological constraints, LHC supersymmetry and Higgs
searches, dark matter search as well as string model building, we propose the
electroweak supersymmetry around the electroweak scale: the squarks and/or
gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are
within one TeV. The Higgsinos can be either heavy or light. We consider bino as
the dominant component of dark matter candidate, and the observed dark matter
relic density is achieved via the neutralino-stau coannihilations. Considering
the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that the
electroweak supersymmetry can be realized, and the gauge coupling unification
can be preserved. With two Scenarios, we study the viable parameter spaces that
satisfy all the current phenomenological constraints, and we present the
concrete benchmark points. Furthermore, we comment on the fine-tuning problem
and LHC searches.Comment: RevTex4, 28 pages, 8 figures, 8 tables, version to appear in EPJ
Higgsino Dark Matter in a SUGRA Model with Nonuniversal Gaugino Masses
We study a specific SUGRA model with nonuniversal gaugino masses as an
alternative to the minimal SUGRA model in the context of supersymmetric dark
matter. The lightest supersymmetric particle in this model comes out to be a
Higgsino dominated instead of a bino dominated lightest neutralino. The thermal
relic density of this Higgsino dark matter is somewhat lower than the
cosmologically favoured range, which means it may be only a subdominant
component of the cold dark matter. Nonetheless, it predicts favourable rates of
indirect detection, which can be seen in square-km size neutrino telescopes.Comment: Version to appear in Phys. Rev. D. A few references added in the
bibliography and a comment added in Section 2. LaTex, 16 pages, 4 figure
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Ground-state properties of tubelike flexible polymers
In this work we investigate structural properties of native states of a
simple model for short flexible homopolymers, where the steric influence of
monomeric side chains is effectively introduced by a thickness constraint. This
geometric constraint is implemented through the concept of the global radius of
curvature and affects the conformational topology of ground-state structures. A
systematic analysis allows for a thickness-dependent classification of the
dominant ground-state topologies. It turns out that helical structures,
strands, rings, and coils are natural, intrinsic geometries of such tubelike
objects
Ferromagnetism in the Strong Hybridization Regime of the Periodic Anderson Model
We determine exactly the ground state of the one-dimensional periodic
Anderson model (PAM) in the strong hybridization regime. In this regime, the
low energy sector of the PAM maps into an effective Hamiltonian that has a
ferromagnetic ground state for any electron density between half and three
quarters filling. This rigorous result proves the existence of a new magnetic
state that was excluded in the previous analysis of the mixed valence systems.Comment: Accepted in Phys. Rev.
Anisotropic dark energy stars
A model of compact object coupled to inhomogeneous anisotropic dark energy is
studied. It is assumed a variable dark energy that suffers a phase transition
at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff
equations are integrated to know the structure of these objects. The anisotropy
is concentrated on a thin shell where the phase transition takes place, while
the rest of the star remains isotropic. The family of solutions obtained
depends on the coupling parameter between the dark energy and the fermion
matter. The solutions share several features in common with the gravastar
model. There is a critical coupling parameter that gives non-singular black
hole solutions. The mass-radius relations are studied as well as the internal
structure of the compact objects. The hydrodynamic stability of the models is
analyzed using a standard test from the mass-radius relation. For each
permissible value of the coupling parameter there is a maximum mass, so the
existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in
Astrophysics & Space Scienc
An oncogenic role for sphingosine kinase 2
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an antiproliferative/ pro-apoptotic function for SK2, while others indicate it has a prosurvival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.Heidi A. Neubauer, Duyen H. Pham, Julia R. Zebol, Paul A.B. Moretti, Amanda L. Peterson, Tamara M. Leclercq, Huasheng Chan, Jason A. Powell, Melissa R. Pitman, Michael S. Samuel, Claudine S. Bonder, Darren J. Creek, Briony L. Gliddon and Stuart M. Pitso
- …
