104 research outputs found

    Treatment of DomesticWastewaterwith Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation

    Get PDF
    In order to apply microbial fuel cell (MFC) process more practically in wastewater treatment, both power generation and removal of chemical oxygen demand (COD) were examined in an air-cathode MFC fed with domestic wastewater under continuous operation. At a hydraulic retention time (HRT) of 2.0 h, the air-cathode MFC was able to generate electricity from domestic wastewater with a maximum power density of P = 103 2 mWm–2 (5772 mW m–3) and an average Coulomb efficiency (CE) of 18.4%; meanwhile, to achieve an average COD removal up to 71 %. Increasing HRT from 2h to 10–30 h was found to be more effective for COD removal, however, instability in voltage output was also observed. An increased power generation of 1734mW m–2 (9648 mW m–3) was obtained with the aid of NaCl addition at a mass fraction of w = 2.4 %, because of an elevated conductivity of the solution with accord internal resistance of 227 0

    Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    Full text link
    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio r≡ωc/ω0r\equiv\omega_c/\omega_0 between the reservoir cutoff frequency ωc\omega_c and the system oscillator frequency ω0\omega_0, % between ω0\omega_0 the characteristic frequency of the %quantum system of interest, and ωc\omega_c the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio rr and the thermal energy kBTk_BT, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and the ESD time can be prolonged by adjusting the temperature and the superconducting phases Φk\Phi_k which split the energy levels.Comment: 13 pages, 3 figure

    Robust stationary entanglement of two coupled qubits in independent environments

    Full text link
    The dissipative dynamics of two interacting qubits coupled to independent reservoirs at nonzero temperatures is investigated, paying special attention to the entanglement evolution. The counter-rotating terms in the qubit-qubit interaction give rise to stationary entanglement, traceable back to the ground state structure. The robustness of this entanglement against thermal noise is thoroughly analyzed, establishing that it can be detected at reasonable experimental temperatures. Some effects linked to a possible reservoir asymmetry are brought to light.Comment: 8 pages, 6 figures; version accepted for publication on Eur. Phys. J.

    Controlled-NOT logic gate for phase qubits based on conditional spectroscopy

    Full text link
    A controlled-NOT logic gate based on conditional spectroscopy has been demonstrated recently for a pair of superconducting flux qubits [Plantenberg et al., Nature 447, 836 (2007)]. Here we study the fidelity of this type of gate applied to a phase qubit coupled to a resonator (or a pair of capacitively coupled phase qubits). Our results show that an intrinsic fidelity of more than 99% is achievable in 45ns.Comment: 5 pages, 5 figures, To appear in Quantum Inf. Pro

    Fast geometric gate operation of superconducting charge qubits in circuit QED

    Full text link
    A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario

    Dispersive Manipulation of Paired Superconducting Qubits

    Full text link
    We combine the ideas of qubit encoding and dispersive dynamics to enable robust and easy quantum information processing (QIP) on paired superconducting charge boxes sharing a common bias lead. We establish a decoherence free subspace on these and introduce universal gates by dispersive interaction with a LC resonator and inductive couplings between the encoded qubits. These gates preserve the code space and only require the established local symmetry and the control of the voltage bias.Comment: 5 pages, incl. 1 figur

    Life after charge noise: recent results with transmon qubits

    Full text link
    We review the main theoretical and experimental results for the transmon, a superconducting charge qubit derived from the Cooper pair box. The increased ratio of the Josephson to charging energy results in an exponential suppression of the transmon's sensitivity to 1/f charge noise. This has been observed experimentally and yields homogeneous broadening, negligible pure dephasing, and long coherence times of up to 3 microseconds. Anharmonicity of the energy spectrum is required for qubit operation, and has been proven to be sufficient in transmon devices. Transmons have been implemented in a wide array of experiments, demonstrating consistent and reproducible results in very good agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in Quantum Inf. Pro

    Time-Dependent Partition-Free Approach in Resonant Tunneling Systems

    Full text link
    An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in order to deal with the time-dependent current response of a resonant tunneling system. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No fictitious partitions are used. Besides the steady-state responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under what circumstances a steady-state current develops and compare our result with the one obtained in the partitioned scheme. We prove a Theorem of asymptotic Equivalence between the two schemes for arbitrary time-dependent disturbances. We also show that the steady-state current is independent of the history of the external perturbation (Memory Loss Theorem). In the so called wide-band limit an analytic result for the time-dependent current is obtained. In the interacting case we propose an exact non-equilibrium Green function approach based on Time Dependent Density Functional Theory. The equations are no more difficult than an ordinary Mean Field treatment. We show how the scattering-state scheme by Lang follows from our formulation. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is obtained. As an example the time-dependent current response is calculated in the Random Phase Approximation.Comment: final version, 18 pages, 9 figure

    Clauser-Horne inequality for electron counting statistics in multiterminal mesoscopic conductors

    Full text link
    In this paper we derive the Clauser-Horne (CH) inequality for the full electron counting statistics in a mesoscopic multiterminal conductor and we discuss its properties. We first consider the idealized situation in which a flux of entangled electrons is generated by an entangler. Given a certain average number of incoming entangled electrons, the CH inequality can be evaluated for different numbers of transmitted particles. Strong violations occur when the number of transmitted charges on the two terminals is the same (Q1=Q2Q_1=Q_2), whereas no violation is found for Q1≠Q2Q_1\ne Q_2. We then consider two actual setups that can be realized experimentally. The first one consists of a three terminal normal beam splitter and the second one of a hybrid superconducting structure. Interestingly, we find that the CH inequality is violated for the three terminal normal device. The maximum violation scales as 1/M and 1/M21/M^2 for the entangler and normal beam splitter, respectively, 2MM being the average number of injected electrons. As expected, we find full violation of the CH inequality in the case of the superconducting system.Comment: 26 pages, 9 figures. Ref. adde
    • …
    corecore