41 research outputs found
Stripes ordering in self-stratification experiments of binary and ternary granular mixtures
The self-stratification of binary and ternary granular mixtures has been
experimentally investigated. Ternary mixtures lead to a particular ordering of
the strates which was not accounted for in former explanations. Bouncing grains
are found to have an important effect on strate formation. A complementary
mechanism for self-stratification of binary and ternary granular mixtures is
proposed.Comment: 4 pages, 5 figures. submitted for pubication, guess wher
Geometric origin of mechanical properties of granular materials
Some remarkable generic properties, related to isostaticity and potential
energy minimization, of equilibrium configurations of assemblies of rigid,
frictionless grains are studied. Isostaticity -the uniqueness of the forces,
once the list of contacts is known- is established in a quite general context,
and the important distinction between isostatic problems under given external
loads and isostatic (rigid) structures is presented. Complete rigidity is only
guaranteed, on stability grounds, in the case of spherical cohesionless grains.
Otherwise, the network of contacts might deform elastically in response to load
increments, even though grains are rigid. This sets an uuper bound on the
contact coordination number. The approximation of small displacements (ASD)
allows to draw analogies with other model systems studied in statistical
mechanics, such as minimum paths on a lattice. It also entails the uniqueness
of the equilibrium state (the list of contacts itself is geometrically
determined) for cohesionless grains, and thus the absence of plastic
dissipation. Plasticity and hysteresis are due to the lack of such uniqueness
and may stem, apart from intergranular friction, from small, but finite,
rearrangements, in which the system jumps between two distinct potential energy
minima, or from bounded tensile contact forces. The response to load increments
is discussed. On the basis of past numerical studies, we argue that, if the ASD
is valid, the macroscopic displacement field is the solution to an elliptic
boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and
minor errors correcte
Local mean-field study of capillary condensation in silica aerogels
We apply local mean-field (i.e. density functional) theory to a lattice model
of a fluid in contact with a dilute, disordered gel network. The gel structure
is described by a diffusion-limited cluster aggregation model. We focus on the
influence of porosity on both the hysteretic and the equilibrium behavior of
the fluid as one varies the chemical potential at low temperature. We show that
the shape of the hysteresis loop changes from smooth to rectangular as the
porosity increases and that this change is associated to disorder-induced
out-of-equilibrium phase transitions that differ on adsorption and on
desorption. Our results provide insight in the behavior of He in silica
aerogels.Comment: 19 figure
Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology
We have combined the original diffusion-limited aggregation model introduced
by Witten and Sander with the surface thermodynamics of the growing solid
aggregate. The theory is based on the consideration of the surface chemical
potential as a thermodynamic function of the temperature and nearest-neighbor
configuration. The Monte Carlo simulations on a two-dimensional square lattice
produce the broad range of shapes such as fractal dendritic structures, densely
branching patterns, and compact aggregates. The morphology diagram illustrating
the relationship between the model parameters and cluster geometry is presented
and discussed.Comment: 5 pages, 6 figure
Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence
Background: The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed.Purpose: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems.Materials and Methods: The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted kappa values, and classification accuracy.Results: A total of 105 patients (mean age, 62 years +/- 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years +/- 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted k values of 0.60 +/- 0.01 for CO-RADS scores and 0.54 +/- 0.01 for CT severity scores.Conclusion: With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. (C) RSNA, 2020Cardiovascular Aspects of Radiolog