206 research outputs found

    Scanning the Landscape of Flux Compactifications: Vacuum Structure and Soft Supersymmetry Breaking

    Full text link
    We scan the landscape of flux compactifications for the Calabi-Yau manifold P[1,1,1,6,9]4\mathbb{P}^4_{[1,1,1,6,9]} with two K\" ahler moduli by varying the value of the flux superpotential W0W_0 over a large range of values. We do not include uplift terms. We find a rich phase structure of AdS and dS vacua. Starting with W01W_0\sim 1 we reproduce the exponentially large volume scenario, but as W0W_0 is reduced new classes of minima appear. One of them corresponds to the supersymmetric KKLT vacuum while the other is a new, deeper non-supersymmetric minimum. We study how the bare cosmological constant and the soft supersymmetry breaking parameters for matter on D7 branes depend on W0W_0, for these classes of minima. We discuss potential applications of our results.Comment: draft format remove

    Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications

    Full text link
    We study the behaviour of the string loop corrections to the N=1 4D supergravity Kaehler potential that occur in flux compactifications of IIB string theory on general Calabi-Yau three-folds. We give a low energy interpretation for the conjecture of Berg, Haack and Pajer for the form of the loop corrections to the Kaehler potential. We check the consistency of this interpretation in several examples. We show that for arbitrary Calabi-Yaus, the leading contribution of these corrections to the scalar potential is always vanishing, giving an "extended no-scale structure". This result holds as long as the corrections are homogeneous functions of degree -2 in the 2-cycle volumes. We use the Coleman-Weinberg potential to motivate this cancellation from the viewpoint of low-energy field theory. Finally we give a simple formula for the 1-loop correction to the scalar potential in terms of the tree-level Kaehler metric and the correction to the Kaehler potential. We illustrate our ideas with several examples. A companion paper will use these results in the study of Kaehler moduli stabilisation.Comment: 34 pages and 3 figures; typos corrected and references adde

    Towards Realistic String Vacua From Branes At Singularities

    Get PDF
    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo nn (dPndP_n) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure

    LARGE Volume String Compactifications at Finite Temperature

    Full text link
    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature TmaxT_{max}, above which the internal space decompactifies, as well as the temperature TT_*, that is reached after the decay of the heaviest moduli. The natural constraint T<TmaxT_*<T_{max} implies a lower bound on the allowed values of the internal volume V\mathcal{V}. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order V104ls6\mathcal{V}\sim 10^{4}l_s^6, which lead to standard GUT theories. Instead, the bound favours values of the order V1015ls6\mathcal{V}\sim 10^{15}l_s^6, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.Comment: 54 pages + appendix, 5 figures; v2: minor corrections, references and footnotes added, version published on JCA

    Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

    Full text link
    We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3. Slight changes in the tex

    SUSY Breaking in Local String/F-Theory Models

    Full text link
    We investigate bulk moduli stabilisation and supersymmetry breaking in local string/F-theory models where the Standard Model is supported on a del Pezzo surface or singularity. Computing the gravity mediated soft terms on the Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to M_{3/2}. This gives rise to several phenomenological scenarios, depending on the strength of perturbative corrections to the effective action and the source of de Sitter lifting, in which the soft terms are suppressed by at least M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these scenarios predict a minimal value of the volume to be V ~ 10^{6-7} in string units, which would give a unification scale of order M_{GUT} ~ M_s V^{1/6} ~ 10^{16} GeV. The strong suppression of gravity mediated soft terms could also possibly allow a scenario of dominant gauge mediation in the visible sector but with a very heavy gravitino M_{3/2} > 1 TeV

    Natural Quintessence in String Theory

    Full text link
    We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than- Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass)^4, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppressed coupling to Standard Model particles which avoids stringent fifth-force constraints. On the other hand, if dark matter is realised in terms of Kaluza-Klein states, unsuppressed couplings between dark energy and dark matter can emerge, leading to a scenario of coupled quintessence within string theory. We study the dynamics of quintessence in our set-up, showing that its main features make it compatible with observations.Comment: 26 page

    Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation

    Full text link
    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kahler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction

    Gauge Threshold Corrections for Local Orientifolds

    Full text link
    We study gauge threshold corrections for systems of fractional branes at local orientifold singularities and compare with the general Kaplunovsky-Louis expression for locally supersymmetric N=1 gauge theories. We focus on branes at orientifolds of the C^3/Z_4, C^3/Z_6 and C^3/Z_6' singularities. We provide a CFT construction of these theories and compute the threshold corrections. Gauge coupling running undergoes two phases: one phase running from the bulk winding scale to the string scale, and a second phase running from the string scale to the infrared. The first phase is associated to the contribution of N=2 sectors to the IR beta functions and the second phase to the contribution of both N=1 and N=2 sectors. In contrast, naive application of the Kaplunovsky-Louis formula gives single running from the bulk winding mode scale. The discrepancy is resolved through 1-loop non-universality of the holomorphic gauge couplings at the singularity, induced by a 1-loop redefinition of the twisted blow-up moduli which couple differently to different gauge nodes. We also study the physics of anomalous and non-anomalous U(1)s and give a CFT description of how masses for non-anomalous U(1)s depend on the global properties of cycles.Comment: 44 page

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia
    corecore