256 research outputs found

    General Supersymmetric Solutions of Five-Dimensional Supergravity

    Full text link
    The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated in hep-th/0401129, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed.Comment: 24 pages, references added, uses JHEP3.cl

    Geometries with Killing Spinors and Supersymmetric AdS Solutions

    Full text link
    The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS3AdS_3 and AdS2AdS_2 solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n+22n+2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n≄3n\ge 3, we show that when the geometry in 2n+22n+2 dimensions is a cone we obtain a class of geometries in 2n+12n+1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n=3,4n=3,4, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all nn.Comment: 28 page

    CELLS v1.0 : updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains.

    Get PDF
    International audienceThe paper describes the fully parallelized electrical scheme CELLS which is suitable to simulate explicitly electrified storm systems on parallel computers. Our motivation here is to show that a cloud electricity scheme can be developed for use on large grids with complex terrain. Large computational domains are needed to perform real case meteorological simulations with many independent convective cells. The scheme computes the bulk electric charge attached to each cloud particle and hydrometeor. Positive and negative ions are also taken into account. Several parametrizations of the dominant non-inductive charging process are included and an inductive charging process as well. The electric field is obtained by inverting the Gauss equation with an extension to terrain-following coordinates. The new feature concerns the lightning flash scheme which is a simplified version of an older detailed sequential scheme. Flashes are composed of a bidirectional leader phase (vertical extension from the triggering point) and a phase obeying a fractal law (with horizontal extension on electrically charged zones). The originality of the scheme lies in the way the branching phase is treated to get a parallel code. The complete electrification scheme is tested for the 10 July 1996 STERAO case and for the 21 July 1998 EULINOX case. Flash characteristics are analysed in detail and additional sensitivity experiments are performed for the STERAO case. Although the simulations were run for flat terrain conditions, they show that the model behaves well on multiprocessor computers. This opens a wide area of application for this electrical scheme with the next objective of running real meterological case on large domains

    On a class of 4D Kahler bases and AdS_5 supersymmetric Black Holes

    Get PDF
    We construct a class of toric Kahler manifolds, M_4, of real dimension four, a subset of which corresponds to the Kahler bases of all known 5D asymptotically AdS_5 supersymmetric black-holes. In a certain limit, these Kahler spaces take the form of cones over Sasaki spaces, which, in turn, are fibrations over toric manifolds of real dimension two. The metric on M_4 is completely determined by a single function H(x), which is the conformal factor of the two dimensional space. We study the solutions of minimal five dimensional gauged supergravity having this class of Kahler spaces as base and show that in order to generate a five dimensional solution H(x) must obey a simple sixth order differential equation. We discuss the solutions in detail, which include all known asymptotically AdS_5 black holes as well as other spacetimes with non-compact horizons. Moreover we find an infinite number of supersymmetric deformations of these spacetimes with less spatial isometries than the base space. These deformations vanish at the horizon, but become relevant asymptotically.Comment: 34 pages, 3 figures. v2: formula (8.35) and other minor typos corrected; references added; accepted for publication in JHE

    UV-divergences of Wilson Loops for Gauge/Gravity Duality

    Full text link
    We analyze the structure of the UV divergences of the Wilson loop for a general gauge/gravity duality. We find that, due to the presence of a nontrivial NSNS B-field and metric, new divergences that cannot be subtracted out by the conventional Legendre transform may arise. We also derive conditions on the B-field and the metric, which when satisfied, the leading UV divergence will become linear, and can be cancelled out by choosing the boundary condition of the string appropriately. Our results, together with the recent result of arXiv:0807.5127, where the effect of a nontrivial dilaton on the structure of UV divergences in Wilson loop is analysed, allow us to conclude that Legendre transform is at best capable of cancelling the linear UV divergences arising from the area of the worldsheet, but is incapable to handle the divergences associated with the dilaton or the B-field in general. We also solve the conditions for the cancellation of the leading linear divergences generally and find that many well-known supergravity backgrounds are of these kinds, including examples such as the Sakai-Sugimoto QCD model or N=1 duality with Sasaki-Einstein spaces. We also point out that Wilson loop in the Klebanov-Strassler background have a divergence associated with the B-field which cannot be cancelled away with the Legendre transform. Finally we end with some comments on the form of the Wilson loop operator in the ABJM superconformal Chern-Simons theory.Comment: 26 pages. LaTeX. v2: reference added. version to appear in JHE

    Relationship between dynamical heterogeneities and stretched exponential relaxation

    Full text link
    We identify the dynamical heterogeneities as an essential prerequisite for stretched exponential relaxation in dynamically frustrated systems. This heterogeneity takes the form of ordered domains of finite but diverging lifetime for particles in atomic or molecular systems, or spin states in magnetic materials. At the onset of the dynamical heterogeneity, the distribution of time intervals spent in such domains or traps becomes stretched exponential at long time. We rigorously show that once this is the case, the autocorrelation function of the renewal process formed by these time intervals is also stretched exponential at long time.Comment: 8 pages, 4 figures, submitted to PR

    Comparing health workforce forecasting approaches for healthcare planning: The case for ophthalmologists

    Get PDF
    Health workforce planning is essential in the provision of quality healthcare. Several approaches to planning are customarily used and advocated, each with unique underlying assumptions. Thus, a thorough understanding of each assumption is required in order to make an informed decision on the choice of forecasting approach to be used. For illustration, we compare results for eye care requirements in Singapore using three established workforce forecasting approaches – workforce-to-population-ratio, needs based approach, utilization based approach – and a proposed robust integrated approach to discuss the appropriateness of each approach under various scenarios. Four simulation models using the systems modeling methodology of system dynamics were developed for use in each approach. These models were initialized and simulated using the example of eye care workforce planning in Singapore, to project the number of ophthalmologists required up to the year 2040 under the four different approaches. We found that each approach projects a different number of ophthalmologists required over time. The needs based approach tends to project the largest number of required ophthalmologists, followed by integrated, utilization based and workforce-to-population ratio approaches in descending order. The four different approaches vary widely in their forecasted workforce requirements and reinforce the need to be discerning of the fundamental differences of each approach in order to choose the most appropriate one. Further, health workforce planning should also be approached in a comprehensive and integrated manner that accounts for developments in demographic and healthcare systems

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length Ο\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances r≫Οr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    The holographic superconductors in higher-dimensional AdS soliton

    Full text link
    We explore the behaviors of the holographic superconductors at zero temperature for a charged scalar field coupled to a Maxwell field in higher-dimensional AdS soliton spacetime via analytical way. In the probe limit, we obtain the critical chemical potentials increase linearly as a total dimension dd grows up. We find that the critical exponent for condensation operator is obtained as 1/2 independently of dd, and the charge density is linearly related to the chemical potential near the critical point. Furthermore, we consider a slightly generalized setup the Einstein-Power-Maxwell field theory, and find that the critical exponent for condensation operator is given as 1/(4−2n)1/(4-2n) in terms of a power parameter nn of the Power-Maxwell field, and the charge density is proportional to the chemical potential to the power of 1/(2−n)1/(2-n).Comment: LaTeX, 16 pages, 5 figures, typos corrected, one reference added, version to appear in European Physical Journal
    • 

    corecore