1,828 research outputs found

    A Study on the Sexual Dysfunction of Female Recipients Who Underwent Hematopoietic Stem Cell Transplantation

    Get PDF

    Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations

    Full text link
    We present a general study of a three neutrino flavour transition model based on the supersymmetric interactions which violate R-parity. These interactions induce flavour violating scattering reactions between solar matter and neutrinos. The model does not contain any vacuum mass or mixing angle for the first generation neutrino. Instead, the effective mixing in the first generation is induced via the new interactions. The model provides a natural interpretation of the atmospheric neutrino anomaly, and is consistent with reactor experiments. We determine all R-parity violating couplings which can contribute to the effective neutrino oscillations, and summarize the present laboratory bounds. Independent of the specific nature of the (supersymmetric) flavour violating model, the experimental data on the solar neutrino rates and the recoil electron energy spectrum are inconsistent with the theoretical predictions. The confidence level of the χ2\chi^2-analysis ranges between 104\sim 10^{-4} and 103\sim 10^{-3}. The incompatibility, is due to the new SNO results, and excludes the present model. We conclude that a non-vanishing vacuum mixing angle for the first generation neutrino is necessary in our model. We expect this also to apply to the solutions based on other flavour violating interactions having constraints of the same order of magnitude.Comment: 17 pages, Latex fil

    Neutrino Wave Packets in Quantum Field Theory

    Full text link
    We present a model of neutrino oscillations in the framework of quantum field theory in which the propagating neutrino and the particles participating to the production and detection processes are described by wave packets. The neutrino state is a superposition of massive neutrino wave packets determined by the production process, as naturally expected from causality. We show that the energies and momenta of the massive neutrino components relevant for neutrino oscillations are in general different from the average energies and momenta of the propagating massive neutrino wave packets, because of the effects of the detection process. Our results confirm the correctness of the standard expression for the oscillation length of extremely relativistic neutrinos and the existence of a coherence length.Comment: 25 page

    Reduced order models for control of fluids using the Eigensystem Realization Algorithm

    Full text link
    In feedback flow control, one of the challenges is to develop mathematical models that describe the fluid physics relevant to the task at hand, while neglecting irrelevant details of the flow in order to remain computationally tractable. A number of techniques are presently used to develop such reduced-order models, such as proper orthogonal decomposition (POD), and approximate snapshot-based balanced truncation, also known as balanced POD. Each method has its strengths and weaknesses: for instance, POD models can behave unpredictably and perform poorly, but they can be computed directly from experimental data; approximate balanced truncation often produces vastly superior models to POD, but requires data from adjoint simulations, and thus cannot be applied to experimental data. In this paper, we show that using the Eigensystem Realization Algorithm (ERA) \citep{JuPa-85}, one can theoretically obtain exactly the same reduced order models as by balanced POD. Moreover, the models can be obtained directly from experimental data, without the use of adjoint information. The algorithm can also substantially improve computational efficiency when forming reduced-order models from simulation data. If adjoint information is available, then balanced POD has some advantages over ERA: for instance, it produces modes that are useful for multiple purposes, and the method has been generalized to unstable systems. We also present a modified ERA procedure that produces modes without adjoint information, but for this procedure, the resulting models are not balanced, and do not perform as well in examples. We present a detailed comparison of the methods, and illustrate them on an example of the flow past an inclined flat plate at a low Reynolds number.Comment: 22 pages, 7 figure

    Palm kernel expellers as an alternative ingredient in growing pig diets

    Get PDF
    This study evaluated the effects of palm kernel expellers in growing diets on growth performance, nutrient digestibility, and carcass and meat quality characteristics of growing-finishing pigs. A total of 88 growing pigs were randomly assigned to two dietary treatment groups. The control diet (CON) was a typical growing or finishing diet based on corn-soybean meal, and the treatment diet (PKE) was formulated by replacing CON with 20% palm kernel expellers. The PKE-CON group was fed the PKE diet during the growing period (six weeks) and the CON diet during the finishing period (12 weeks). The CON-CON group was fed the CON diets during both growing and finishing periods. The PKE-CON group showed significantly depressed growth performance and lower nutrient digestibility than the CON-CON group during the growing period. However, after feeding the typical finisher diets during the finishing period, the PKE-CON group showed no difference in growth performance in comparison with the CON-CON group during both the finishing and overall experimental periods. In addition, carcass and meat quality characteristics were not significantly different between the PKE-CON and the CON-CON groups. The results of this study imply that palm kernel expellers can be an alternative ingredient in the growing diets of growing-finishing pigs if the combined feeding strategy (PKE for the growing period and CON for the finishing period) is used.Keywords: Feed alternatives, growing pig diet, growth performance, meat quality traits, palm kernel expelle

    Chiral corrections to the axial charges of the octet baryons from quenched QCD

    Get PDF
    We calculate one-loop correction to the axial charges of the octet baryons using quenched chiral perturbation theory, in order to understand chiral behavior of the axial charges in quenched approximation to quantum chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral perturbation theory result, c0+cl2mπ2lnmπ2+c_0+c_{l2}m_\pi^2\,\ln{m_\pi^2}+\cdots, we find that the quenched chiral perturbation theory result, c0Q+(cl0Q+cl2Qmπ2)lnmπ2+c2Qmπ2+c_0^Q+(c_{l0}^Q+c_{l2}^Qm_\pi^2)\ln{m_\pi^2}+c_2^Q m_\pi^2+\cdots, is singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure

    Survey of Sensor Technology for Aircraft Cabin Environment Sensing

    Get PDF
    The aircraft cabin environment is unique due to the proximity of the passengers, the need for cabin pressurization, and the low humidity. All of these aspects are complicated by the fact that the aircraft is a semi-enclosed structure. There is an increased desire to monitor the aircraft cabin environment with various sensors for comfort and safety. However, the aircraft cabin environment is composed of a large number of factors. Some of these factors can include air quality, temperature, level of pressurization, and motion of the aircraft. Therefore, many types of sensors must be used to monitor aircraft environments. A variety of technology options are often available for each sensor. Consequently, a fair number of tradeoffs need to be carefully considered when designing a sensor monitoring system for the aircraft cabin environment. For instance, a system designer may need to decide if the increased accuracy of a sensor using a particular technology is worth the increased power consumption over a similar sensor employing a more efficient, less accurate technology. In order to achieve a good solution, a designer needs to understand the tradeoffs and general operation for all of the different sensor technologies that could be used in the design. The purpose of this paper is to provide a survey of the current sensor technology. The primary focus of this paper is on sensors and technologies that cover the most common aspects of aircraft cabin environment monitoring. The first half of this paper details the basic operation of different sensor technologies. The second half covers the individual environmental conditions which need to be sensed. This will include the benefits, limitations, and applications of the different technologies available for each particular type of sensor

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte

    The anti-B --> D* lepton anti-neutrino form factor at zero recoil and the determination of V(cb)

    Full text link
    We summarize our lattice QCD study of the form factor at zero recoil in the decay anti-B --> D* lepton anti-neutrino. After careful consideration of all sources of systematic uncertainty, we find, h_A1(1) = 0.913(+0.024-0.017)(+0.017-0.030), where the first uncertainty is from statistics and fitting while the second combined uncertainty is from all other systematic effects.Comment: Lattice2001(HeavyQuark); 3 pages, 2 eps figures, espcrc2.st
    corecore