4 research outputs found

    Cosmic distance-duality as probe of exotic physics and acceleration

    Get PDF
    In cosmology, distances based on standard candles (e.g. supernovae) and standard rulers (e.g. baryon oscillations) agree as long as three conditions are met: (1) photon number is conserved, (2) gravity is described by a metric theory with (3) photons travelling on unique null geodesics. This is the content of distance-duality (the reciprocity relation) which can be violated by exotic physics. Here we analyse the implications of the latest cosmological data sets for distance-duality. While broadly in agreement and confirming acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia at z > 0.5, perhaps due to lensing magnification bias. This brightening has been interpreted as evidence for a late-time transition in the dark energy but because it is not seen in the d_A data we argue against such an interpretation. Our results do, however, rule out significant SN-Ia evolution and extinction: the "replenishing" grey-dust model with no cosmic acceleration is excluded at more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication in PR

    Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae

    Get PDF
    It is now a known fact that if we happen to be living in the middle of a large underdense region, then we will observe an "apparent acceleration", even when any form of dark energy is absent. In this paper, we present a "Minimal Void" scenario, i.e. a "void" with minimal underdensity contrast (of about -0.4) and radius (~ 200-250 Mpc/h) that can, not only explain the supernovae data, but also be consistent with the 3-yr WMAP data. We also discuss consistency of our model with various other measurements such as Big Bang Nucleosynthesis, Baryon Acoustic Oscillations and local measurements of the Hubble parameter, and also point out possible observable signatures.Comment: Minor numerical errors and typos corrected, references adde

    Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

    Get PDF
    We update constraints on cosmic opacity by combining recent SN Type Ia data compilation with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter ϵ\epsilon parametrising deviations from the luminosity-angular diameter distance relation (dL=dA(1+z)2+ϵd_L=d_A(1+z)^{2+\epsilon}), is ϵ=0.040.07+0.08\epsilon=-0.04_{-0.07}^{+0.08} (2-σ\sigma). For the redshift range between 0.2 and 0.35 this corresponds to an opacity Δτ<0.012\Delta\tau<0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and mini-charged particles.Comment: 29 pages, 13 figure
    corecore