5 research outputs found

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR

    A note on solitary waves with variable surface tension in water of infinite depth

    No full text
    Two-dimensional gravity-capillary solitary waves propagating at the surface of a fluid of infinite depth are considered. The effects of gravity and of variable surface tension are included in the free-surface boundary condition. The numerical results extend the constant surface tension results of Vanden-Broeck and Dias to situations where the surface tension varies along the free surface
    corecore