46 research outputs found

    Resonant magnetic mode in superconducting 2-leg ladders

    Full text link
    The spin dynamics of a doped 2-leg spin ladder is investigated by numerical techniques. We show that a hole pair-magnon boundstate evolves at finite hole doping into a sharp magnetic excitation below the two-particle continuum. This is supported by a field theory argument based on a SO(6)-symmetric ladder. Similarities and differences with the resonant mode of the high-Tc_c cuprates are discussed.Comment: 5 pages, 5 figure

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Î”â€‰âŁâˆŒâ€‰âŁ1/Ο\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Theory of Neutron Scattering in the Normal and Superconducting State of YBCO

    Full text link
    We analyze neutron experiments on \ybco at various stoichiometries in the superconducting state, within the context of a bi-layer theory which yields good agreement with the normal state Cu-NMR and neutron data as a function of \omega, q and T. A d-wave superconducting state exhibits peaks at q = ( \pi , \pi , \pi ) and sharp maxima as a function of \omega, at twice the gap frequency. This behavior may have been observed experimentally. The counterpart behavior for other choices of order parameter symmetry is discussed.Comment: uuencoded postscript file for the entire paper enclose

    Principles of the Field Theory of High Temperature Superconductivity in Underdoped Copper-Oxides

    Full text link
    Here I extend my last work about the origin of the pseudo-gaps in underdoped cuprates (arXiv: cond-mat. 1011.3206), to include the mechanism of superconductivity. This is done by adapting the formalism of the double correlations in systems with nested Fermi surfaces to the semi one dimensional system of strings of holes. It is proposed that magnetic interaction is crucial for the establishment of the pseudogap and the high temperature superconductivity. It is shown that superconductivity disturbs the completeness of the strings of holes, and creates fluctuations in their shapes. This, in turn, reduces the magnetic interaction and the pseudogap order.Comment: This paper has been withdrawn by the author. 27 page

    Doping dependence of the resonance peak and incommensuration in high-TcT_{c} superconductors

    Full text link
    The doping and frequency evolutions of the incommensurate spin response and the resonance mode are studied based on the scenario of the Fermi surface topology. We use the slave-boson mean-field approach to the t−tâ€Č−Jt-t^{\prime}-J model and including the antiferromagnetic fluctuation correction in the random-phase approximation. We find that the equality between the incommensurability and the hole concentration is reproduced at low frequencies in the underdoped regime. This equality observed in experiments was explained {\it only} based on the stripe model before. We also obtain the downward dispersion for the spin response and predict its doping dependence for further experimental testing, as well as a proportionality between the low-energy incommensurability and the resonance energy. Our results suggest a common origin for the incommensuration and the resonance peak based on the Fermi surface topology and the d-wave symmetry.Comment: 5 pages, 4 PS figure

    Neutron scattering and superconducting order parameter in YBa2Cu3O7

    Full text link
    We discuss the origin of the neutron scattering peak at 41 meV observed in YBa2_2Cu3_3O7_7 below TcT_c. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has ss-wave symmetry and opposite signs in the bonding and antibonding electron bands formed within a Cu2_2O4_4 bilayer.Comment: In this version, only few minor corrections and the update of references were done in order to make perfect correspondence with the published version. RevTeX, psfig, 5 pages, and 3 figure

    Antiferromagnetic ordering in a 90 K copper oxide superconductor

    Full text link
    Using elastic neutron scattering, we evidence a commensurate antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-Tc\rm T_c cuprate YBa2(Cu1−yCoy)3O7+ή\rm YBa_2(Cu_{1-y}Co_y)_3O_{7+\delta} (y=0.013, Tc\rm T_c=93 K). As in the Co-free system, the spin excitation spectrum is dominated by a magnetic resonance peak at 41 meV but with a reduced spectral weight. The substitution of Co thus leads to a state where AF and SC cohabit showing that the CuO2_2 plane is a highly antiferromagnetically polarizable medium even for a sample where Tc_c remains optimum.Comment: 3 figure

    Spin Susceptibility in Underdoped YBa2Cu3O6+x\bf YBa_2Cu_3O_{6+x}

    Full text link
    We report a comprehensive polarized and unpolarized neutron scattering study of the evolution of the dynamical spin susceptibility with temperature and doping in three underdoped single crystals of the \YBCO{6+x} high temperature superconductor: \YBCO{6.5} (Tc = 52 K), \YBCO{6.7} (Tc = 67 K), and \YBCO{6.85} (T_c = 87 K). Theoretical implications of these data are discussed, and a critique of recent attempts to relate the spin excitations to the thermodynamics of high temperature superconductors is given.Comment: minor revisions, to appear in PR

    Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO(4+y)

    Full text link
    We report a detailed study, using neutron scattering, transport and magnetization measurements, of the interplay between superconducting (SC) and spin density wave (SDW) order in La2CuO(4+y). Both kinds of order set in below the same critical temperature. However, the SDW order grows with applied magnetic field, whereas SC order is suppressed. Most importantly, the field dependence of the SDW Bragg peak intensity has a cusp at zero field, as predicted by a recent theory of competing SDW and SC order. This leads us to conclude that there is a repulsive coupling between the two order parameters. The question of whether the two kinds of order coexist or microscopically phase separate is discussed.Comment: Version accepted for publication in Phys. Rev. B. Improved discussion in connection with the muSR result

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T∌1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t∌8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
    corecore