1,591 research outputs found

    The X-ray flaring properties of Sgr A* during six years of monitoring with Swift

    Get PDF
    Starting in 2006, Swift has been targeting a region of ~21'X21' around Sagittarius A* (Sgr A*) with the onboard X-ray telescope. The short, quasi-daily observations offer an unique view of the long-term X-ray behavior of the supermassive black hole. We report on the data obtained between 2006 February and 2011 October, which encompasses 715 observations with a total accumulated exposure time of ~0.8 Ms. A total of six X-ray flares were detected with Swift, which all had an average 2-10 keV luminosity of Lx (1-4)E35 erg/s (assuming a distance of 8 kpc). This more than doubles the number of such bright X-ray flares observed from Sgr A*. One of the Swift-detected flares may have been softer than the other five, which would indicate that flares of similar intensity can have different spectral properties. The Swift campaign allows us to constrain the occurrence rate of bright (Lx > 1E35 erg/s) X-ray flares to be ~0.1-0.2 per day, which is in line with previous estimates. This analysis of the occurrence rate and properties of the X-ray flares seen with Swift offers an important calibration point to asses whether the flaring behavior of Sgr A* changes as a result of its interaction with the gas cloud that is projected to make a close passage in 2013.Comment: 8 pages, 5 figures, 3 tables. Shortened, accepted to Ap

    Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes

    Full text link
    Relativistic X-ray emission lines from the inner accretion disk around black holes are reviewed. Recent observations with the Chandra X-ray Observatory, X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be good probes of strong gravitational effects. A number of important observational and theoretical developments are highlighted, including evidence of black hole spin and effects such as gravitational light bending, the detection of relativistic lines in stellar-mass black holes, and evidence of orbital-timescale line flux variability. In addition, the robustness of the relativistic disk lines against absorption, scattering, and continuum effects is discussed. Finally, prospects for improved measures of black hole spin and understanding the spin history of supermassive black holes in the context of black hole-galaxy co-evolution are presented. The best data and most rigorous results strongly suggest that relativistic X-ray disk lines can drive future explorations of General Relativity and disk physics.Comment: 40 pages, includes color figures, to appear in ARAA, vol 45, in pres
    corecore