70 research outputs found

    On the algorithmic construction of classifying spaces and the isomorphism problem for biautomatic groups

    Full text link
    We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups, and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite centre. We describe an algorithm that, given an arbitrary finite presentation of an automatic group Γ\Gamma, will construct explicit finite models for the skeleta of K(Γ,1)K(\Gamma,1) and hence compute the integral homology and cohomology of Γ\Gamma.Comment: 21 pages, 4 figure

    ISSCR standards for the use of human stem cells in basic research

    Get PDF
    The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research

    A unified view on beamformers for M/EEG source reconstruction

    No full text
    Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging
    • …
    corecore