10 research outputs found

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR

    Front-end process modeling in silicon

    No full text
    Front-end processing mostly deals with technologies associated to junction formation in semiconductor devices. Ion implantation and thermal anneal models are key to predict active dopant placement and activation. We review the main models involved in process simulation, including ion implantation, evolution of point and extended defects, amorphization and regrowth mechanisms, and dopant-defect interactions. Hierarchical simulation schemes, going from fundamental calculations to simplified models, are emphasized in this Colloquium. Although continuum modeling is the mainstream in the semiconductor industry, atomistic techniques are starting to play an important role in process simulation for devices with nanometer size features. We illustrate in some examples the use of atomistic modeling techniques to gain insight and provide clues for process optimization
    corecore