5 research outputs found

    Slicing Sets and Measures, and the Dimension of Exceptional Parameters

    Full text link
    We consider the problem of slicing a compact metric space \Omega with sets of the form \pi_{\lambda}^{-1}\{t\}, where the mappings \pi_{\lambda} \colon \Omega \to \R, \lambda \in \R, are \emph{generalized projections}, introduced by Yuval Peres and Wilhelm Schlag in 2000. The basic question is: assuming that \Omega has Hausdorff dimension strictly greater than one, what is the dimension of the 'typical' slice \pi_{\lambda}^{-1}{t}, as the parameters \lambda and t vary. In the special case of the mappings \pi_{\lambda} being orthogonal projections restricted to a compact set \Omega \subset \R^{2}, the problem dates back to a 1954 paper by Marstrand: he proved that for almost every \lambda there exist positively many tRt \in \R such that \dim \pi_{\lambda}^{-1}{t} = \dim \Omega - 1. For generalized projections, the same result was obtained 50 years later by J\"arvenp\"a\"a, J\"arvenp\"a\"a and Niemel\"a. In this paper, we improve the previously existing estimates by replacing the phrase 'almost all \lambda' with a sharp bound for the dimension of the exceptional parameters.Comment: 31 pages, three figures; several typos corrected and large parts of the third section rewritten in v3; to appear in J. Geom. Ana

    Self-similar sets: projections, sections and percolation

    Get PDF
    We survey some recent results on the dimension of orthogonal projections of self-similar sets and of random subsets obtained by percolation on self-similar sets. In particular we highlight conditions when the dimension of the projections takes the generic value for all, or very nearly all, projections. We then describe a method for deriving dimensional properties of sections of deterministic self-similar sets by utilising projection properties of random percolation subsets.Postprin
    corecore