1,241 research outputs found

    The Upper Critical Field in Disordered Two-Dimensional Superconductors

    Full text link
    We present calculations of the upper critical field in superconducting films as a function of increasing disorder (as measured by the normal state resistance per square). In contradiction to previous work, we find that there is no anomalous low-temperature positive curvature in the upper critical field as disorder is increased. We show that the previous prediction of this effect is due to an unjustified analytical approximation of sums occuring in the perturbative calculation. Our treatment includes both a careful analysis of first-order perturbation theory, and a non-perturbative resummation technique. No anomalous curvature is found in either case. We present our results in graphical form.Comment: 11 pages, 8 figure

    Effect of Magnetic Impurities on Suppression of the Transition Temperature in Disordered Superconductors

    Full text link
    We calculate the first-order perturbative correction to the transition temperature TcT_c in a superconductor with both non-magnetic and magnetic impurities. We do this by first evaluating the correction to the effective potential, Ω(Δ)\Omega(\Delta), and then obtain the first-order correction to the order parameter, Δ\Delta, by finding the minimum of Ω(Δ)\Omega(\Delta). Setting Δ=0\Delta=0 finally allows TcT_c to be evaluated. TcT_c is now a function of both the resistance per square, R□R_\square, a measure of the non-magnetic disorder, and the spin-flip scattering rate, 1/τs1/\tau_s, a measure of the magnetic disorder. We find that the effective pair-breaking rate per magnetic impurity is virtually independent of the resistance per square of the film, in agreement with an experiment of Chervenak and Valles. This conclusion is supported by both the perturbative calculation, and by a non-perturbative re-summation technique.Comment: 29 pages, 9 figure

    Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    Full text link
    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\AA . Samples with single layers thinner than 30\AA deviate from the Cooper limit theory. We suggest that this is due to the "inverse proximity effect" where the normal metal electrons improve screening in the superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure

    The Momentum Constraints of General Relativity and Spatial Conformal Isometries

    Full text link
    Transverse-tracefree (TT-) tensors on (R3,gab)({\bf R}^3,g_{ab}), with gabg_{ab} an asymptotically flat metric of fast decay at infinity, are studied. When the source tensor from which these TT tensors are constructed has fast fall-off at infinity, TT tensors allow a multipole-type expansion. When gabg_{ab} has no conformal Killing vectors (CKV's) it is proven that any finite but otherwise arbitrary set of moments can be realized by a suitable TT tensor. When CKV's exist there are obstructions -- certain (combinations of) moments have to vanish -- which we study.Comment: 16 page

    Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations

    Full text link
    We show that asymptotically hyperbolic solutions of the Einstein constraint equations with constant mean curvature can be glued in such a way that their asymptotic regions are connected.Comment: 37 pages; 2 figure

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    Ring exchange, the Bose metal, and bosonization in two dimensions

    Full text link
    Motivated by the high-T_c cuprates, we consider a model of bosonic Cooper pairs moving on a square lattice via ring exchange. We show that this model offers a natural middle ground between a conventional antiferromagnetic Mott insulator and the fully deconfined fractionalized phase which underlies the spin-charge separation scenario for high-T_c superconductivity. We show that such ring models sustain a stable critical phase in two dimensions, the *Bose metal*. The Bose metal is a compressible state, with gapless but uncondensed boson and ``vortex'' excitations, power-law superconducting and charge-ordering correlations, and broad spectral functions. We characterize the Bose metal with the aid of an exact plaquette duality transformation, which motivates a universal low energy description of the Bose metal. This description is in terms of a pair of dual bosonic phase fields, and is a direct analog of the well-known one-dimensional bosonization approach. We verify the validity of the low energy description by numerical simulations of the ring model in its exact dual form. The relevance to the high-T_c superconductors and a variety of extensions to other systems are discussed, including the bosonization of a two dimensional fermionic ring model

    Near-Limb Zeeman and Hanle Diagnostics

    Full text link
    "Weak" magnetic-field diagnostics in faint objects near the bright solar disk are discussed in terms of the level of non-object signatures, in particular, of the stray light in telescopes. Calculated dependencies of the stray light caused by diffraction at the 0.5-, 1.6-, and 4-meter entrance aperture are presented. The requirements for micro-roughness of refractive and reflective primary optics are compared. Several methods for reducing the stray light (the Lyot coronagraphic technique, multiple stages of apodizing in the focal and exit pupil planes, apodizing in the entrance aperture plane with a special mask), and reducing the random and systematic errors are noted. An acceptable level of stray light in telescopes is estimated for the V-profile recording with a signal-to-noise ratio greater than three. Prospects for the limb chromosphere magnetic measurements are indicated.Comment: 11 pages, 3 figure

    Weak Localization Effect in Superconductors by Radiation Damage

    Get PDF
    Large reductions of the superconducting transition temperature TcT_{c} and the accompanying loss of the thermal electrical resistivity (electron-phonon interaction) due to radiation damage have been observed for several A15 compounds, Chevrel phase and Ternary superconductors, and NbSe2\rm{NbSe_{2}} in the high fluence regime. We examine these behaviors based on the recent theory of weak localization effect in superconductors. We find a good fitting to the experimental data. In particular, weak localization correction to the phonon-mediated interaction is derived from the density correlation function. It is shown that weak localization has a strong influence on both the phonon-mediated interaction and the electron-phonon interaction, which leads to the universal correlation of TcT_{c} and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information, Plesse see http://www.fen.bilkent.edu.tr/~yjki

    Changes in Optical Conductivity due to Readjustments in Electronic Density of States

    Full text link
    Within the model of elastic impurity scattering, we study how changes in the energy dependence of the electronic density of states (EDOS) N(ϵ)N(\epsilon) around the Fermi energy ϵF\epsilon_F are reflected in the frequency-dependent optical conductivity σ(ω)\sigma(\omega). While conserving the total number of states in N(ϵ)N(\epsilon) we compute the induced changes in σ(ω)\sigma(\omega) as a function of ω\omega and in the corresponding optical scattering rate 1/τop(ω)1/\tau_{\rm op}(\omega). These quantities mirror some aspects of the EDOS changes but the relationship is not direct. Conservation of optical oscillator strength is found not to hold, and there is no sum rule on the optical scattering rate although one does hold for the quasiparticle scattering. Temperature as well as increases in impurity scattering lead to additional changes in optical properties not seen in the constant EDOS case. These effects have their origin in an averaging of the EDOS around the Fermi energy ϵF\epsilon_F on an energy scale set by the impurity scattering.Comment: 13 pages, 7 figure
    • …
    corecore