55 research outputs found

    Water-like anomalies for core-softened models of fluids: One dimension

    Full text link
    We use a one-dimensional (1d) core-softened potential to develop a physical picture for some of the anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The interest in the 1d system stems from the facts that closed-form results are possible and that the qualitative behavior in 1d is reproduced in the liquid phase for higher dimensions. We discuss the relation between the shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density anomaly. We find that certain forms of the two-step square well potential lead to the existence at T=0 of a low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the appearance of a point CC' at a positive pressure, which is the analog of the T=0 ``critical point'' in the 1d1d Ising model. The existence of point CC' leads to anomalous behavior of the isothermal compressibility KTK_T and the isobaric specific heat CPC_P.Comment: 22 pages, 7 figure

    Sediment delivery on rill and interrill areas

    Get PDF
    Equations which relate sediment delivery to a power function of flow rate and slope gradient were evaluated in this study. The data used to parameterize the equations were obtained from sites where crop residues had been removed, and moldboard plowing and disking had occurred. Measurements of sediment delivery resulting from simulated rainfall were obtained from preformed rills and interrill areas. The equations provided reliable sediment delivery estimates for selected soils located throughout the United States. To use the sediment delivery equations, soil-related parameter values must be identified. Multiple regression analyses were performed to relate parameter values used in the equations to selected soil properties. Equations were also developed for estimating rill sediment delivery under rainfall conditions from rill soil loss and discharge data collected without the addition of rainfall. The equations identified in this study, and appropriate soils information, can be used to predict sediment delivery on both rill and interrill areas

    Theoretical description of phase coexistence in model C60

    Full text link
    We have investigated the phase diagram of the Girifalco model of C60 fullerene in the framework provided by the MHNC and the SCOZA liquid state theories, and by a Perturbation Theory (PT), for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys. 118:304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties. Then we have determined the phase diagram of the model, by using either the SCOZA, or the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate. All results are discussed in terms of the basic assumptions underlying each theory. We have selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. The overall results appear as a robust benchmark for further theoretical investigations on higher order C(n>60) fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.

    Sediment delivery on rill and interrill areas

    No full text
    Equations which relate sediment delivery to a power function of flow rate and slope gradient were evaluated in this study. The data used to parameterize the equations were obtained from sites where crop residues had been removed, and moldboard plowing and disking had occurred. Measurements of sediment delivery resulting from simulated rainfall were obtained from preformed rills and interrill areas. The equations provided reliable sediment delivery estimates for selected soils located throughout the United States. To use the sediment delivery equations, soil-related parameter values must be identified. Multiple regression analyses were performed to relate parameter values used in the equations to selected soil properties. Equations were also developed for estimating rill sediment delivery under rainfall conditions from rill soil loss and discharge data collected without the addition of rainfall. The equations identified in this study, and appropriate soils information, can be used to predict sediment delivery on both rill and interrill areas

    Simulação das perdas de água por evaporação e arraste, no aspersor NY-7 (4,6 mm x 4,0 mm), em sistemas de aspersão convencional Simulation of evaporation and wind drift losses, in the NY-7 sprinkler (4.6 mm x 4.0 mm), in stationary sprinler irrigation systems

    No full text
    As perdas de água por evaporação e arraste em sistemas de irrigação por aspersão podem assumir valores consideráveis, reduzindo a eficiência do sistema. Os objetivos do presente trabalho foram avaliar a capacidade preditiva de cinco modelos empíricos para estimar perdas de água por evaporação e arraste em aspersores modelo NY-7 (bocais de 4,6 mm x 4,0 mm), trabalhando sob diferentes condições operacionais e ambientais, e ajustar modelos específicos para o aspersor NY-7. Comparando os resultados medidos em ensaios de campo, com os resultados simulados, foi possível concluir que os cinco modelos empíricos considerados apresentaram pouca ou nenhuma adequação, tanto para os ensaios com um único aspersor (quadrado do erro-médio de 5,27; 20,70; 5,07; 6,95 e 7,06% para os modelos empíricos 1; 2; 3; 4 e 5, respectivamente) quanto para os ensaios com linhas laterais contendo aspersores (quadrado do erro-médio de 7,41; 24,43; 6,72; 3,16 e 2,9% para os modelos empíricos 1; 2; 3; 4 e 5, respectivamente). Comparados aos cinco modelos empíricos considerados, os novos modelos ajustados apresentaram menores erros, indicando que a aplicação de modelos empíricos deve ser limitada às condições de operação (diâmetro de bocal, pressão de operação, etc.) similares àquelas em que os modelos foram desenvolvidos.<br>Evaporation and wind drift losses during sprinkler irrigation may reach significant values, cutting system efficiency down. The present work aims: (a) to evaluate the ability of five empirical models in predicting losses of a NY-7 model sprinkler (nozzle of 4.6 mm x 4.0 mm), working under different operational and climatic conditions; and (b) to adjust specific models to the NY-7 sprinkler. By comparing measured values - obtained on field trials - with simulated ones, it was possible to conclude that, in general, the five considered empirical models presented little or no adjustment for the single-sprinkler outdoor tests (root mean square error of 5.27; 20.70; 5.07; 6.95 and 7.06% for empirical models 1; 2; 3; 4 and 5, respectively) as well as for the block irrigation outdoor tests (root mean square error of 7.41; 24.43; 6.72; 3.16 and 2.90% for empirical models 1; 2; 3; 4 and 5, respectively). When compared to the five considered empirical models, the new adjusted models showed lower errors, indicating that the application of empirical models must be limitated to working conditions (nozzle size, operational pressure, etc.) similar to the ones in which they were developed
    corecore