511 research outputs found

    Parity Violation in Astrophysics

    Full text link
    Core collapse supernovae are gigantic explosions of massive stars that radiate 99% of their energy in neutrinos. This provides a unique opportunity for large scale parity or charge conjugation violation. Parity violation in a strong magnetic field could lead to an asymmetry in the neutrino radiation and recoil of the newly formed neutron star. Charge conjugation violation in the neutrino-nucleon interaction reduces the ratio of neutrons to protons in the neutrino driven wind above the neutron star. This is a problem for r-process nucleosynthesis in this wind. On earth, parity violation is an excellent probe of neutrons because the weak charge of a neutron is much larger than that of a proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to precisely measure the neutron radius of 208^{208}Pb with parity violating elastic electron scattering. This has many implications for astrophysics, including the structure of neutron stars, and for atomic parity nonconservation experiments.}Comment: 4 pages, 2 figures, proceedings of PAVI04 conference in Grenoble, Franc

    Dopaminergic, glutamatergic but not opioidergic mechanisms mediate induction of FOS-like protein by cocaethylene

    Get PDF
    Cocaethylene is a psychoactive metabolite formed\ud during the combined consumption of cocaine and ethanol. As\ud this metabolite has many properties in common with cocaine, it is conceivable that cocaethylene administration may induce the activity of nuclear transcription factors that regulate the expression of late-response genes. Therefore, the temporal induction of FOS-like protein in rat brain was examined following IP administration of 60 mmol/kg cocaethylene. Immunoreactivity for the protein was detectable at 1 h in striatal neurons and had virtually disappeared 6 h after drug treatment. Administration of\ud specific dopaminergic (SCH-23390; 0.5 mg/kg) and glutamatergic (MK-801; 1 mg/kg) receptor antagonists prior to cocaethylene indicated a significant role for dopamine (D1) and Nmethyl-D-aspartate receptor subtypes in mediating the nuclear induction of the aforementioned transcription factor protein. In contrast, no significant effects on FOS-like protein in discrete neurons of the caudate putamen were found when spiradoline (U-62066), a kappa opioid-receptor agonist, was administered either IP (10 mg/kg) or directly (50 nmol) into the brain parenchyma. In addition, we uncovered a differential sensitivity of Long–Evans rats to the behavioral effects of cocaethylene, with the psychoactive metabolite producing significantly less behavioral activity (e.g., locomotion, rearing, and continuous sniffing)than that produced by cocaine (molar equivalent of 60 mmol/kg cocaethylene). These findings indicate both common and disparate effects of cocaethylene and its parent compound, cocaine, on receptor pathways that regulate target alterations in gene expression and drug-induced motor behavior

    Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems

    Full text link
    We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.Comment: 24 pages in phyzzx.te

    Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism

    Full text link
    Advances in neutrino transport allow realistic neutrino interactions to be incorporated into supernova simulations. We add tensor couplings to relativistic RPA calculations of neutrino opacities. Our results reproduce free-space neutrino-nucleon cross sections at low density, including weak magnetism and recoil corrections. In addition, our opacities are thermodynamically consistent with relativistic mean field equations of state. We find antineutrino mean free paths that are considerably larger then those for neutrinos. This difference depends little on density. In a supernova, this difference could lead to an average energy of νˉμ\bar\nu_\mu that is larger than that for νμ\nu_\mu by an amount that is comparable to the energy difference between νμ\nu_\mu and νˉe\bar\nu_eComment: 15 pages, 10 figures, submitted to PRC, minor changes to figs. (9,10

    Comment on Counting Black Hole Microstates Using String Dualities

    Full text link
    We discuss a previous attempt at a microscopic counting of the entropy of asymptotically flat non-extremal black-holes. This method used string dualities to relate 4 and 5 dimensional black holes to the BTZ black hole. We show how the dualities can be justified in a certain limit, equivalent to a near horizon limit, but the resulting spacetime is no longer asymptotically flat.Comment: 10 pages, harvmac. v(2) typo correcte

    Comment on "The black hole final state"

    Get PDF
    Horowitz and Maldacena have suggested that the unitarity of the black hole S-matrix can be reconciled with Hawking's semiclassical arguments if a final-state boundary condition is imposed at the spacelike singularity inside the black hole. We point out that, in this scenario, departures from unitarity can arise due to interactions between the collapsing body and the infalling Hawking radiation inside the event horizon. The amount of information lost when a black hole evaporates depends on the extent to which these interactions are entangling.Comment: 4 pages, REVTe

    Relativistic analysis of the 208Pb(e,e'p)207Tl reaction at high momentum

    Get PDF
    The recent 208Pb(e,e'p)207Tl data from NIKHEF-K at high missing momentum (p_m>300 MeV/c) are compared to theoretical results obtained with a fully relativistic formalism previously applied to analyze data on the low missing momentum (p_m < 300 MeV/c) region. The same relativistic optical potential and mean field wave functions are used in the two p_m-regions. The spectroscopic factors of the various shells are extracted from the analysis of the low-p_m data and then used in the high-p_m region. In contrast to previous analyses using a nonrelativistic mean field formalism, we do not find a substantial deviation from the mean field predictions other than that of the spectroscopic factors, which appear to be consistent with both low- and high-p_m data. We find that the difference between results of relativistic and nonrelativistic formalisms is enhanced in the p_m<0 region that will be interesting to explore experimentally.Comment: 12 pages, LaTeX+Revtex, included 3 postscript figures. To appear in the Physical Review C (Rapid Communications

    Non-Local Effects of Multi-Trace Deformations in the AdS/CFT Correspondence

    Full text link
    The AdS/CFT correspondence relates deformations of the CFT by "multi-trace operators" to "non-local string theories". The deformed theories seem to have non-local interactions in the compact directions of space-time; in the gravity approximation the deformed theories involve modified boundary conditions on the fields which are explicitly non-local in the compact directions. In this note we exhibit a particular non-local property of the resulting space-time theory. We show that in the usual backgrounds appearing in the AdS/CFT correspondence, the commutator of two bulk scalar fields at points with a large enough distance between them in the compact directions and a small enough time-like distance between them in AdS vanishes, but this is not always true in the deformed theories. We discuss how this is consistent with causality.Comment: 24 pages, 6 figures, 2 appendices. v2: added reference
    • …
    corecore