9 research outputs found

    Evidence that tufted puffins Fratercula cirrhata use colony overflights to reduce kleptoparasitism risk

    No full text
    Predation, foraging and mating costs are critical factors shaping life histories. Among colonial seabirds, colony overflights may enhance foraging or mating success, or diminish the risk of predation and kleptoparasitism. The latter possibility is difficult to test because low predation or kleptoparasitism rates could be due either to low danger or to effective counter-tactics by prey. Tufted puffins Fratercula cirrhata breeding at a large colony in British Columbia, Canada, deliver several loads of fish each day to their nestlings and are targets for kleptoparasitism by glaucous-winged gulls Larus glaucescens. In the present study, we documented the ecological conditions under which overflights occurred in order to assess when overflights were made and to statistically isolate the effect of overflights on kleptoparasitism risk at this site. Load-carrying puffins engaged in overflights under ecological conditions associated with relatively high rates of kleptoparasitism. Further, when ecological factors determining risk were statistically controlled, overflights were correlated with marginally lower chances of kleptoparasitism than when the risk factors were ignored. The results suggest that breeding puffins at this site use overflights for kleptoparasite avoidance. This tactic is used sparingly, suggesting it is costly. Costs of overflight behaviour might contribute to the impact of kleptoparasitism on the breeding success of tufted puffins

    Seabird seasonal trophodynamics: isotopic patterns in a community of Pacific alcids

    No full text
    We measured delta N-15 and delta C-13 values in the blood of breeding adults and nestlings of 5 species of alcids at Triangle Island, British Columbia, to estimate the extent to which these seabirds alter their foraging ecology across successive breeding stages. Considerable intraspecific (stage-to-stage) and interspecific variation was found. Two species-common murre Uria aalge and pigeon guillemot Cepphus columba-fed consistently at high trophic levels (i.e. diets of fish) in inshore or benthically linked habitats. The foraging ecology of 3 others-Cassin's auklet Ptychoramphus aleuticus, rhinoceros auklet Cerorhinca monocerata and tufted puffin Fratercula cirrhata-was more variable. Tufted puffins exhibited especially dramatic trophic and habitat shifts between early and late-season diets. With the exception of tufted puffin, the diet of provisioning adults differed from that. fed to their nestlings. Trophic level of the community as a whole increased as the season progressed due to the combination of trophic shifting by rhinoceros auklets and tufted Puffins, and earlier breeding by zooplanktivorous Cassin's auklets than by piscivorous murres and guillemots. Our results contribute to a growing body of evidence that marine bird species exhibit considerable flexibility in their foraging behaviour and also shed new light on seasonal patterns in the trophic relations within marine bird communities

    Requirement of the N-Terminal Extension for Vacuolar Trafficking and Transport Activity of Yeast Ycf1p, an ATP-binding Cassette Transporter

    No full text
    Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function

    The Role of Drug Efflux Pumps in Acute Myeloid Leukemia

    No full text
    corecore