1,841 research outputs found

    Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide

    Get PDF
    The surface oxygen exchange kinetics of bismuth\ud oxide stabilized with 25 mol% erbia (BE25) has been studied\ud in the temperature and pO2 ranges 773–1,023 K and 0.1–\ud 0.95 atm, respectively, using pulse-response 18O–16O isotope\ud exchange measurements. The results indicate that BE25\ud exhibits a comparatively high exchange rate, which is rate\ud determined by the dissociative adsorption of oxygen. Defect\ud chemical considerations and the observed pO2\ud 1=2 dependence\ud of the rate of dissociative oxygen adsorption suggest\ud electron transfer to intermediate superoxide ions as the rate\ud determining step in surface oxygen exchange on BE2

    Failure of Gauge Invariance in the Nonperturbative Formulation of Massless Lorentz-Violating QED

    Full text link
    We consider a Lorentz-violating modification to the fermionic Lagrangian of QED that is known to produce a finite Chern-Simons term at leading order. We compute the second order correction to the one-loop photon self-energy in the massless case using an exact propagator and a nonperturbative formulation of the theory. This nonperturbative theory assigns a definite value to the coefficient of the induced Chern-Simons term; however, we find that the theory fails to preserve gauge invariance at higher orders. We conclude that the specific nonperturbative value of the Chern-Simons coefficient has no special significance.Comment: 8 pages, very minor change

    Supergauge interactions and electroweak baryogenesis

    Get PDF
    We present a complete treatment of the diffusion processes for supersymmetric electroweak baryogenesis that characterizes transport dynamics ahead of the phase transition bubble wall within the symmetric phase. In particular, we generalize existing approaches to distinguish between chemical potentials of particles and their superpartners. This allows us to test the assumption of superequilibrium (equal chemical potentials for particles and sparticles) that has usually been made in earlier studies. We show that in the Minimal Supersymmetric Standard Model, superequilibrium is generically maintained -- even in the absence of fast supergauge interactions -- due to the presence of Yukawa interactions. We provide both analytic arguments as well as illustrative numerical examples. We also extend the latter to regions where analytical approximations are not available since down-type Yukawa couplings or supergauge interactions only incompletely equilibrate. We further comment on cases of broken superequilibrium wherein a heavy superpartner decouples from the electroweak plasma, causing a kinematic bottleneck in the chain of equilibrating reactions. Such situations may be relevant for baryogenesis within extensions of the MSSM. We also provide a compendium of inputs required to characterize the symmetric phase transport dynamics.Comment: 49 pages, 9 figure

    Auxiliary Fields for Super Yang-Mills from Division Algebras

    Get PDF
    Division algebras are used to explain the existence and symmetries of various sets of auxiliary fields for super Yang-Mills in dimensions d=3,4,6,10d=3,4,6,10. (Contribution to G\"ursey Memorial Conference I: Strings and Symmetries)Comment: 7 pages, plain TeX, CERN-TH.7470/9

    Dilaton-Axion hair for slowly rotating Kerr black holes

    Full text link
    Campbell et al. demonstrated the existence of axion ``hair'' for Kerr black holes due to the non-trivial Lorentz Chern-Simons term and calculated it explicitly for the case of slow rotation. Here we consider the dilaton coupling to the axion field strength, consistent with low energy string theory and calculate the dilaton ``hair'' arising from this specific axion source.Comment: 13 pages + 1 fi

    Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    Get PDF
    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the baryon asymmetry is below the present experimental bound. As a consequence electroweak baryogenesis within the MSSM should be confronted on the one hand to future measurements at the LHC on the Higgs and the right-handed stop masses, and on the other hand to more precise calculations of the magnetic field produced at the electroweak phase transition.Comment: 16 pages, 4 figures. Minor corrections and references added to match published versio

    Finite Size and Current Effects on IV Characteristics of Josephson Junction Arrays

    Full text link
    The effects of finite size and of finite current on the current-voltage characteristics of Josephson junction arrays is studied both theoretically and by numerical simulations. The cross-over from non-linear to linear behavior at low temperature is shown to be a finite size effect and the non-linear behavior at higher temperature, T>TKTT>T_{KT}, is shown to be a finite current effect. These are argued to result from competition between the three length scales characterizing the system. The importance of boundary effects is discussed and it is shown that these may dominate the behavior in small arrays.Comment: 5 pages, figures included, to appear in PR

    Dengue fever mimicking acute appendicitis: A case report

    Get PDF
    AbstractINTRODUCTIONDengue fever is an acute viral disease, which usually presents as a mild febrile illness. Patients with severe disease present with dengue haemorrhagic fever or dengue toxic shock syndrome. Rarely, it presents with abdominal symptoms mimicking acute appendicitis. We present a case of a male patient presenting with right iliac fossa pain and suspected acute appendicitis that was later diagnosed with dengue fever following a negative appendicectomy.PRESENTATION OF CASEA 13-year old male patient presented with fever, localized right-sided abdominal pain and vomiting. Abdominal ultrasound was not helpful and appendicectomy was performed due to worsening abdominal signs and an elevated temperature. A normal appendix with enlarged mesenteric nodes was found at surgery. Complete blood count showed thrombocytopenia with leucopenia. Dengue fever was now suspected and confirmed by IgM enzyme-linked immunosorbent assay against dengue virus.DISCUSSIONThis unusual presentation of dengue fever mimicking acute appendicitis should be suspected during viral outbreaks and in patients with atypical symptoms and cytopenias on blood evaluation in order to prevent unnecessary surgery.CONCLUSIONThis case highlights the occurrence of abdominal symptoms and complications that may accompany dengue fever. Early recognition of dengue fever mimicking acute appendicitis will avoid non-therapeutic operation and the diagnosis may be aided by blood investigations indicating a leucopenia, which is uncommon in patients with suppurative acute appendicitis
    • …
    corecore