1,106 research outputs found

    Baseline characteristics and enrichment results from the SONAR trial

    Get PDF
    Aim: The SONAR trial uses an enrichment design based on the individual response to the selective endothelin receptor antagonist atrasentan on efficacy (the degree of the individual response in the urinary albumin‐to‐creatinine ratio [UACR]) and safety/tolerability (signs of sodium retention and acute increases in serum creatinine) to assess the effects of this agent on major renal outcomes. The patient population and enrichment results are described here. Methods: Patients with type 2 diabetes with an estimated glomerular filtration rate (eGFR) within 25 to 75 mL/min/1.73 m2 and UACR between 300 and 5000 mg/g were enrolled. After a run‐in period, eligible patients received 0.75 mg/d of atrasentan for 6 weeks. A total of 2648 responder patients in whom UACR decreased by ≄30% compared to baseline were enrolled, as were 1020 non‐responders with a UACR decrease of <30%. Patients who experienced a weight gain of >3 kg and in whom brain natriuretic peptide exceeded ≄300 pg/mL, or who experienced an increase in serum creatinine >20% (0.5 mg/dL), were not randomized. Results: Baseline characteristics were similar for atrasentan responders and non‐responders. Upon entry to the study, median UACR was 802 mg/g in responders and 920 mg/g in non‐responders. After 6 weeks of treatment with atrasentan, the UACR change in responders was −48.8% (95% CI, −49.8% to −47.9%) and in non‐responders was −1.2% (95% CI, −6.4% to 3.9%). Changes in other renal risk markers were similar between responders and non‐responders except for a marginally greater reduction in systolic blood pressure and eGFR in responders. Conclusions: The enrichment period has successfully identified a population with a profound UACR reduction without clinical signs of sodium retention in whom a large atrasentan effect on clinically important renal outcomes is possible. The SONAR trial aims to establish whether atrasentan confers renal protection

    Collapse dynamics of trapped Bose-Einstein condensates

    Full text link
    We analyze the implosion and subsequent explosion of a trapped condensate after the scattering length is switched to a negative value. Our results compare very well qualitatively and fairly well quantitatively with the results of recent experiments at JILA.Comment: 4 pages, 3 figure

    Charged and Pseudoscalar Higgs production at a Muon Collider

    Get PDF
    We consider single charged Higgs (H±H^{\pm}) and pseudoscalar Higgs (A0A^0) production in association with a gauge boson at ÎŒ+Ό−\mu^+\mu^- colliders. We find that the tree-level t-channel and s-channel contributions to ÎŒ+Ό−→H±W∓,A0Z\mu^+\mu^-\to H^{\pm}W^{\mp}, A^0Z are enhanced for large values of tan⁥ÎČ\tan\beta, allowing sizeable cross-sections whose analogies at e+e−e^+e^- colliders would be very small. These processes provide attractive new ways of producing such particles at ÎŒ+Ό−\mu^+\mu^- colliders and are superior to the conventional methods in regions of parameter space.Comment: 11 pages Latex, 5 figures, formulae added in sections 2.2 and 2.3, extra discussion in section 2.3, references adde

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Spiral phase and phase separation of the double exchange model in the large-S limit

    Full text link
    The phase diagram of the double exchange model is studied in the large-S limit at zero temperature in two and three dimensions. We find that the spiral state has lower energy than the canted antiferromagnetic state in the region between the antiferromagnetic phase and the ferromagnetic phase. At small doping, the spiral phase is unstable against phase separation due to its negative compressibility. When the Hund coupling is small, the system separates into spiral regions and antiferromagnetic regions. When the Hund coupling is large, the spiral phase disappears completely and the system separates into ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    An action for the exact string black hole

    Full text link
    A local action is constructed describing the exact string black hole discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a special 2D Maxwell-dilaton gravity theory, linear in curvature and field strength. Two constants of motion exist: mass M>1, determined by the level k, and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking entropy are derived and studied in detail. Winding/momentum mode duality implies the existence of a similar action, arising from a branch ambiguity, which describes the exact string naked singularity. In the strong coupling limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black hole. Some applications to black hole thermodynamics and 2D string theory are discussed and generalizations - supersymmetric extension, coupling to matter and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3 and at the end of 5.3 by adding 2 pages of clarifying text; updated refs; corrected typo

    Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description

    Get PDF
    We perform a global analysis of the sensitivity of LEP2 and e^+e^- colliders with a c.m. energy in the range 500 - 2000 GeV to new flavor-changing single top quark production in the effective Lagrangian approach. The processes considered are sensitive to new flavor-changing effective vertices such as Ztc, htc, four-Fermi tcee contact terms as well as a right-handed Wtb coupling. We show that e^+ e^- colliders are most sensitive to the physics responsible for the contact tcee vertices. For example, it is found that the recent data from the 189 GeV LEP2 run can be used to rule out any new flavor physics that can generate these four-Fermi operators up to energy scales of \Lambda > 0.7 - 1.4 TeV, depending on the type of the four-Fermi interaction. We also show that a corresponding limit of \Lambda > 1.3 - 2.5 and \Lambda > 17 - 27 TeV can be reached at the future 200 GeV LEP2 run and a 1000 GeV e^+e^- collider, respectively. We note that these limits are much stronger than the typical limits which can be placed on flavor diagonal four-Fermi couplings. Similar results hold for \mu^+\mu^- colliders and for tu(bar) associated production. Finally we briefly comment on the necessity of measuring all flavor-changing effective vertices as they can be produced by different types of heavy physics.Comment: 34 pages, plain latex, 7 figures embadded in the text using epsfig. Added new references and discussions regarding their relevance to the paper. Added more comments on the comparison between flavor-changing and flavor-diagonal contact terms and on the importance of measuring the Ztc verte

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity Ï”(r)\epsilon (r), and with vacuum simulations (Ï”=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the Ï”(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting

    Full text link
    Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the development of a liquid-like spatial distribution of magnetic droplets of average size ~10 Angstroms, the concentration of which is proportional to x (one cluster per ~60 doped electrons). In addition, a long-range ordered ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM) structure of the undoped compound, which is a signature of a G-AFM + FM spin-canted state. The possible relationship between cluster formation and the stabilization of a long-range spin-canting for intermediate doping is discussed.Comment: Submitted to Physical Review
    • 

    corecore