1,140 research outputs found
Baseline characteristics and enrichment results from the SONAR trial
Aim:
The SONAR trial uses an enrichment design based on the individual response to the selective endothelin receptor antagonist atrasentan on efficacy (the degree of the individual response in the urinary albuminâtoâcreatinine ratio [UACR]) and safety/tolerability (signs of sodium retention and acute increases in serum creatinine) to assess the effects of this agent on major renal outcomes. The patient population and enrichment results are described here.
Methods:
Patients with type 2 diabetes with an estimated glomerular filtration rate (eGFR) within 25 to 75âmL/min/1.73âm2 and UACR between 300 and 5000âmg/g were enrolled. After a runâin period, eligible patients received 0.75âmg/d of atrasentan for 6âweeks. A total of 2648 responder patients in whom UACR decreased by â„30% compared to baseline were enrolled, as were 1020 nonâresponders with a UACR decrease of <30%. Patients who experienced a weight gain of >3âkg and in whom brain natriuretic peptide exceeded â„300âpg/mL, or who experienced an increase in serum creatinine >20% (0.5âmg/dL), were not randomized.
Results:
Baseline characteristics were similar for atrasentan responders and nonâresponders. Upon entry to the study, median UACR was 802âmg/g in responders and 920âmg/g in nonâresponders. After 6âweeks of treatment with atrasentan, the UACR change in responders was â48.8% (95% CI, â49.8% to â47.9%) and in nonâresponders was â1.2% (95% CI, â6.4% to 3.9%). Changes in other renal risk markers were similar between responders and nonâresponders except for a marginally greater reduction in systolic blood pressure and eGFR in responders.
Conclusions:
The enrichment period has successfully identified a population with a profound UACR reduction without clinical signs of sodium retention in whom a large atrasentan effect on clinically important renal outcomes is possible. The SONAR trial aims to establish whether atrasentan confers renal protection
Collapse dynamics of trapped Bose-Einstein condensates
We analyze the implosion and subsequent explosion of a trapped condensate
after the scattering length is switched to a negative value. Our results
compare very well qualitatively and fairly well quantitatively with the results
of recent experiments at JILA.Comment: 4 pages, 3 figure
Charged and Pseudoscalar Higgs production at a Muon Collider
We consider single charged Higgs () and pseudoscalar Higgs ()
production in association with a gauge boson at colliders. We find
that the tree-level t-channel and s-channel contributions to are enhanced for large values of , allowing
sizeable cross-sections whose analogies at colliders would be very
small. These processes provide attractive new ways of producing such particles
at colliders and are superior to the conventional methods in
regions of parameter space.Comment: 11 pages Latex, 5 figures, formulae added in sections 2.2 and 2.3,
extra discussion in section 2.3, references adde
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Spiral phase and phase separation of the double exchange model in the large-S limit
The phase diagram of the double exchange model is studied in the large-S
limit at zero temperature in two and three dimensions. We find that the spiral
state has lower energy than the canted antiferromagnetic state in the region
between the antiferromagnetic phase and the ferromagnetic phase. At small
doping, the spiral phase is unstable against phase separation due to its
negative compressibility. When the Hund coupling is small, the system separates
into spiral regions and antiferromagnetic regions. When the Hund coupling is
large, the spiral phase disappears completely and the system separates into
ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.
Damping mechanisms for oscillations in solar prominences
Small amplitude oscillations are a commonly observed feature in
prominences/filaments. These oscillations appear to be of local nature, are
associated to the fine structure of prominence plasmas, and simultaneous flows
and counterflows are also present. The existing observational evidence reveals
that small amplitude oscillations, after excited, are damped in short spatial
and temporal scales by some as yet not well determined physical mechanism(s).
Commonly, these oscillations have been interpreted in terms of linear
magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping
mechanisms that have been recently put forward in order to explain the observed
attenuation scales. These mechanisms include thermal effects, through
non-adiabatic processes, mass flows, resonant damping in non-uniform media, and
partial ionization effects. The relevance of each mechanism is assessed by
comparing the spatial and time scales produced by each of them with those
obtained from observations. Also, the application of the latest theoretical
results to perform prominence seismology is discussed, aiming to determine
physical parameters in prominence plasmas that are difficult to measure by
direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted
An action for the exact string black hole
A local action is constructed describing the exact string black hole
discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a
special 2D Maxwell-dilaton gravity theory, linear in curvature and field
strength. Two constants of motion exist: mass M>1, determined by the level k,
and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM
mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking
entropy are derived and studied in detail. Winding/momentum mode duality
implies the existence of a similar action, arising from a branch ambiguity,
which describes the exact string naked singularity. In the strong coupling
limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black
hole. Some applications to black hole thermodynamics and 2D string theory are
discussed and generalizations - supersymmetric extension, coupling to matter
and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of
his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3
and at the end of 5.3 by adding 2 pages of clarifying text; updated refs;
corrected typo
Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description
We perform a global analysis of the sensitivity of LEP2 and e^+e^- colliders
with a c.m. energy in the range 500 - 2000 GeV to new flavor-changing single
top quark production in the effective Lagrangian approach. The processes
considered are sensitive to new flavor-changing effective vertices such as Ztc,
htc, four-Fermi tcee contact terms as well as a right-handed Wtb coupling. We
show that e^+ e^- colliders are most sensitive to the physics responsible for
the contact tcee vertices. For example, it is found that the recent data from
the 189 GeV LEP2 run can be used to rule out any new flavor physics that can
generate these four-Fermi operators up to energy scales of \Lambda > 0.7 - 1.4
TeV, depending on the type of the four-Fermi interaction. We also show that a
corresponding limit of \Lambda > 1.3 - 2.5 and \Lambda > 17 - 27 TeV can be
reached at the future 200 GeV LEP2 run and a 1000 GeV e^+e^- collider,
respectively. We note that these limits are much stronger than the typical
limits which can be placed on flavor diagonal four-Fermi couplings. Similar
results hold for \mu^+\mu^- colliders and for tu(bar) associated production.
Finally we briefly comment on the necessity of measuring all flavor-changing
effective vertices as they can be produced by different types of heavy physics.Comment: 34 pages, plain latex, 7 figures embadded in the text using epsfig.
Added new references and discussions regarding their relevance to the paper.
Added more comments on the comparison between flavor-changing and
flavor-diagonal contact terms and on the importance of measuring the Ztc
verte
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting
Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the
development of a liquid-like spatial distribution of magnetic droplets of
average size ~10 Angstroms, the concentration of which is proportional to x
(one cluster per ~60 doped electrons). In addition, a long-range ordered
ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is
perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM)
structure of the undoped compound, which is a signature of a G-AFM + FM
spin-canted state. The possible relationship between cluster formation and the
stabilization of a long-range spin-canting for intermediate doping is
discussed.Comment: Submitted to Physical Review
- âŠ