24 research outputs found
Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation
We propose a theory which deals with the structure and interactions of volume
elements in liquid helium II. The approach consists of two nested models linked
via parametric space. The short-wavelength part describes the interior
structure of the fluid element using a non-perturbative approach based on the
logarithmic wave equation; it suggests the Gaussian-like behaviour of the
element's interior density and interparticle interaction potential. The
long-wavelength part is the quantum many-body theory of such elements which
deals with their dynamics and interactions. Our approach leads to a unified
description of the phonon, maxon and roton excitations, and has noteworthy
agreement with experiment: with one essential parameter to fit we reproduce at
high accuracy not only the roton minimum but also the neighboring local maximum
as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure
Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis
BACKGROUND: Guidelines for primary prevention of cardiovascular diseases focus on prediction of coronary heart disease and stroke. We assessed whether or not measurement of N-terminal-pro-B-type natriuretic peptide (NT-proBNP) concentration could enable a more integrated approach than at present by predicting heart failure and enhancing coronary heart disease and stroke risk assessment.
METHODS: In this individual-participant-data meta-analysis, we generated and harmonised individual-participant data from relevant prospective studies via both de-novo NT-proBNP concentration measurement of stored samples and collection of data from studies identified through a systematic search of the literature (PubMed, Scientific Citation Index Expanded, and Embase) for articles published up to Sept 4, 2014, using search terms related to natriuretic peptide family members and the primary outcomes, with no language restrictions. We calculated risk ratios and measures of risk discrimination and reclassification across predicted 10 year risk categories (ie, <5%, 5% to <7·5%, and ≥7·5%), adding assessment of NT-proBNP concentration to that of conventional risk factors (ie, age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol concentrations). Primary outcomes were the combination of coronary heart disease and stroke, and the combination of coronary heart disease, stroke, and heart failure.
FINDINGS: We recorded 5500 coronary heart disease, 4002 stroke, and 2212 heart failure outcomes among 95 617 participants without a history of cardiovascular disease in 40 prospective studies. Risk ratios (for a comparison of the top third vs bottom third of NT-proBNP concentrations, adjusted for conventional risk factors) were 1·76 (95% CI 1·56-1·98) for the combination of coronary heart disease and stroke and 2·00 (1·77-2·26) for the combination of coronary heart disease, stroke, and heart failure. Addition of information about NT-proBNP concentration to a model containing conventional risk factors was associated with a C-index increase of 0·012 (0·010-0·014) and a net reclassification improvement of 0·027 (0·019-0·036) for the combination of coronary heart disease and stroke and a C-index increase of 0·019 (0·016-0·022) and a net reclassification improvement of 0·028 (0·019-0·038) for the combination of coronary heart disease, stroke, and heart failure.
INTERPRETATION: In people without baseline cardiovascular disease, NT-proBNP concentration assessment strongly predicted first-onset heart failure and augmented coronary heart disease and stroke prediction, suggesting that NT-proBNP concentration assessment could be used to integrate heart failure into cardiovascular disease primary prevention.
FUNDING: British Heart Foundation, Austrian Science Fund, UK Medical Research Council, National Institute for Health Research, European Research Council, and European Commission Framework Programme 7
Recommended from our members
Fission product decay heat studies of December 15, 1975
The purpose of the project described is to study fission product decay heating rates, with emphasis on short decay times. Isothermal calorimetry is used to perform benchmark experiments for decay times between 20 seconds and 2000 seconds with an absolute accuracy of better than 5 percent. Experiments are being done with U and will be done eventually with Pu. Thermal neutron spectra are used for the irradiations. The project was initiated in July 1974. Final results for U are expected by 6-30-76, and for Pu by 1-1-77. Final reports for each task will follow the final data by 3 months. The work done to date is described together with the status of the final experimental configuration
Recommended from our members