1,386 research outputs found
New Fermions at ee Colliders: I. Production and Decay
We analyze the production in collisions of new heavy fermions
stemming from extensions of the Standard Model. We write down the most general
expression for the production of two heavy fermions and their subsequent
decays, allowing for the polarization of the ee initial state and
taking into account the final polarization of the fermions. We then discuss the
various decay modes including cascade and three body decays, and the production
mechanisms, both pair production and single production in association with
ordinary fermions.Comment: 21 pages (no figures), Preprint UdeM-LPN-TH-93-15
Long time dynamics and coherent states in nonlinear wave equations
We discuss recent progress in finding all coherent states supported by
nonlinear wave equations, their stability and the long time behavior of nearby
solutions.Comment: bases on the authors presentation at 2015 AMMCS-CAIMS Congress, to
appear in Fields Institute Communications: Advances in Applied Mathematics,
Modeling, and Computational Science 201
Light propagation in non-trivial QED vacua
Within the framework of effective action QED, we derive the light cone
condition for homogeneous non-trivial QED vacua in the geometric optics
approximation. Our result generalizes the ``unified formula'' suggested by
Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts
and refractive indices for soft photons travelling through these vacua.
Furthermore, we clarify the connection between the light velocity shift and the
scale anomaly. This study motivates the introduction of a so-called effective
action charge that characterizes the velocity modifying properties of the
vacuum. Several applications are given concerning vacuum modifications caused
by, e.g., strong fields, Casimir systems and high temperature.Comment: 13 pages, REVTeX, 3 figures, to appear in Phys. Rev.
Collective Dynamics of One-Dimensional Charge Density Waves
The effect of disorder on the static and dynamic behaviour of one-dimensional
charge density waves at low temperatures is studied by analytical and numerical
approaches. In the low temperature region the spatial behaviour of the
phase-phase correlation function is dominated by disorder but the roughness
exponent remains the same as in the pure case. Contrary to high dimensional
systems the dependence of the creep velocity on the electric field is described
by an analytic function.Comment: 4 pages, 4 figure
The Novikov-Veselov Equation and the Inverse Scattering Method, Part I: Analysis
The Novikov-Veselov (NV) equation is a
(2+1)-dimensional nonlinear evolution equation that generalizes the
(1+1)-dimensional Korteweg-deVries (KdV) equation. Solution of the NV
equation using the inverse scattering method has been discussed in the
literature, but only formally (or with smallness assumptions in case of nonzero
energy) because of the possibility of exceptional points, or singularities in
the scattering data. In this work, absence of exceptional points is proved at
zero energy for evolutions with compactly supported, smooth and rotationally
symmetric initial data of the conductivity type:
with a strictly positive function
. The inverse scattering evolution is shown to be well-defined,
real-valued, and preserving conductivity-type. There is no smallness assumption
on the initial data
Structure of the icosahedral Ti-Zr-Ni quasicrystal
The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined
by invoking similarities to periodic crystalline phases, diffraction data and
the results from ab initio calculations. The structure is modeled by
decorations of the canonical cell tiling geometry. The initial decoration model
is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1
approximant structure of the quasicrystal. The decoration model is optimized
using a new method of structural analysis combining a least-squares refinement
of diffraction data with results from ab initio calculations. The resulting
structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration
rule and structural details are discussed.Comment: 12 pages, 8 figure
The Influences of Diesel Particulate Filter Installation on Air Pollutant Emissions for Used Vehicles
Three kinds of diesel particulate filters (DPFs) were installed on used diesel-powered vehicles to investigate their influences on air pollutant emissions. The air pollutant emissions were measured before, after and running for specific distances to assess the deterioration effect. The emission measurement was performed on a chassis dynamometer. The results show that emissions of smoke, CO and HC are all reduced after DPF installation. After 20000 km driving, the emission concentrations of the above 3 criteria air pollutants do not increase in comparison with that right after installation. When DPFs are installed, the emissions of PAHs (polycyclic aromatic hydrocarbons) are reduced by 85.6-89.4% and 69.0-89.2% for heavy-duty diesel vehicles (HDVs) and light-duty diesel vehicles (LDVs), respectively. After driving 20000 km for HDVs and 2500 km for LDVs, PAH emissions do not increase in comparison with that right after installation, indicating that the DPFs do not deteriorate after driving for the test mileages. The lower molecular weight PAHs predominates in the exhaust both before and after DPF installation. The results also show the reduction rate is higher for higher molecular weight PAHs due to their tendency to adsorb on particulate
Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes
We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
- …