106 research outputs found

    Ground state non-universality in the random field Ising model

    Full text link
    Two attractive and often used ideas, namely universality and the concept of a zero temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are non-universal. However, we also show that at finite temperature the thermal order parameter exponent one half is restored so that temperature is a relevant variable. The broader implications of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of two in Eq. 2., added a paragraph in conclusions for clarit

    Random Resistor-Diode Networks and the Crossover from Isotropic to Directed Percolation

    Full text link
    By employing the methods of renormalized field theory we show that the percolation behavior of random resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking perturbation. We present a two-loop calculation of the crossover exponent ϕ\phi. Upon blending the ϵ\epsilon-expansion result with the exact value ϕ=1\phi =1 for one dimension by a rational approximation, we obtain for two dimensions ϕ=1.29±0.05\phi = 1.29\pm 0.05. This value is in agreement with the recent simulations of a two-dimensional random diode network by Inui, Kakuno, Tretyakov, Komatsu, and Kameoka, who found an order parameter exponent β\beta different from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover from isotropic to directed percolation by Frey, T\"{a}uber, and Schwabl and clear up some minor shortcomings.Comment: 24 pages, 2 figure

    Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics

    Full text link
    In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations for the magnetization and its moments at early stage of the dynamic evolution. Our estimates for the dynamic exponents, at the tricritical point, are z=2.215(2)z= 2.215(2) and θ=0.53(2)\theta= -0.53(2).Comment: 12 pages, 9 figure

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure

    Ordering in the dilute weakly-anisotropic antiferromagnet Mn(0.35)Zn(0.65)F2

    Full text link
    The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering in zero field. The Bragg peaks observed below the Neel temperature TN (approximately 10.9 K) indicate stable antiferromagnetic long-range ordering at low temperature. The critical behavior is governed by random-exchange Ising model critical exponents (nu approximately 0.69 and gamma approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks, unusual scattering behavior appears for |q|>0 below a glassy temperature Tg approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable frequency dependence in earlier zero-field ac susceptibility measurements on this sample. These results indicate that long-range order coexists with short-range nonequilibrium clusters in this highly diluted magnet.Comment: 7 pages, 5 figure

    Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra

    Full text link
    Recent measurements on ion conducting glasses have revealed that conductivity spectra for various temperatures and ionic concentrations can be superimposed onto a common master curve by an appropriate rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior, we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a wide range of both temperatures and concentrations. While the model can account for the changes in ionic activation energies upon changing the concentration, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical concentrations and sufficiently low temperatures, a fairly good data collapse is obtained analogous to that found in experiment.Comment: 6 pages, 4 figure

    Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions

    Full text link
    Consider a dd-dimensional antiferromagnet with a quantum disordered ground state and a gap to bosonic excitations with non-zero spin. In a finite external magnetic field, this antiferromagnet will undergo a phase transition to a ground state with non-zero magnetization, describable as the condensation of a dilute gas of bosons. The finite temperature properties of the Bose gas in the vicinity of this transition are argued to obey a hypothesis of ZERO SCALE-FACTOR UNIVERSALITY for d<2d < 2, with logarithmic violations in d=2d=2. Scaling properties of various experimental observables are computed in an expansion in ϵ=2d\epsilon=2-d, and exactly in d=1d=1.Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    Gallbladder microbiota in healthy dogs and dogs with mucocele formation

    Get PDF
    To date studies have not investigated the culture-independent microbiome of bile from dogs, a species where aseptic collection of bile under ultrasound guidance is somewhat routine. Despite frequent collection of bile for culture-based diagnosis of bacterial cholecystitis, it is unknown whether bile from healthy dogs harbors uncultivable bacteria or a core microbiota. The answer to this question is critical to understanding the pathogenesis of biliary infection and as a baseline to exploration of other biliary diseases in dogs where uncultivable bacteria could play a pathogenic role. A pressing example of such a disease would be gallbladder mucocele formation in dogs. This prevalent and deadly condition is characterized by excessive secretion of abnormal mucus by the gallbladder epithelium that can eventually lead to rupture of the gallbladder or obstruction of bile flow. The cause of mucocele formation is unknown as is whether uncultivable, and therefore unrecognized, bacteria play any systematic role in pathogenesis. In this study we applied next-generation 16S rRNA gene sequencing to identify the culture-negative bacterial community of gallbladder bile from healthy dogs and gallbladder mucus from dogs with mucocele formation. Integral to our study was the use of 2 separate DNA isolations on each sample using different extraction methods and sequencing of negative control samples enabling recognition and curation of contaminating sequences. Microbiota findings were validated by simultaneous culture-based identification, cytological examination of bile, and fluorescence in-situ hybridization (FISH) performed on gallbladder mucosa. Using culture-dependent, cytological, FISH, and 16S rRNA sequencing approaches, results of our study do not support existence of a core microbiome in the bile of healthy dogs or gallbladder mucus from dogs with mucocele formation. Our findings further document how contaminating sequences can significantly contribute to the results of sequencing analysis when performed on samples with low bacterial biomass
    corecore