140 research outputs found

    Huge Electro-/photo-/acidoinduced Second-order Nonlinear Contrasts from Multiaddressable Indolinooxazolodine

    Get PDF
    In this work, linear and nonlinear optical properties of electro-/acido-/photoswitchable indolino[2,1-b]oxazolidine derivatives were investigated. The linear optical properties of the closed and open forms have been characterized by UV–visible and IR spectroscopies associated with DFT calculations. Nonlinear optical properties of the compounds have been obtained by ex situ and in situ hyper-Rayleigh experiments in solution. We show that protonated, oxidized, and irradiated open forms exhibit the same visible absorption and NLO features. In particular, the closed and open forms exhibit a huge contrast of the first hyperpolarizability with an enhancement factor of 40–45. Additionally, we have designed an original electrochemical cell that allows to monitor in situ the hyper-Rayleigh response upon electrical stimulus. We report notably a partial but good and reversible NLO contrast in situ during oxidation/reduction cycles. Thereby, indolinooxazolidine moieties are versatile trimodal switchable units which are very promising for applications in devices

    Indolinooxazolidine: A Versatile Switchable Unit

    Get PDF
    The design of multiresponsive systems continues to arouse a lot of interest. In such multistate/multifunctional systems, it is possible to isomerize a molecular system from one metastable state to another by application of different stimulation such as light, heat, proton, or electron. In this context, some researches deal with the design of multimode switch where a same interconversion between two states could be induced by using indifferently two or more different kind of stimuli. Herein, we demonstrate that the association of an indolinooxazolidine moiety with a bithiophene unit allows the development of a new trimode switch. A reversible conversion between a colorless closed form and a colorful open form can be equally performed by light, proton, or electrical stimulation. In addition, the oxidation of this system allows the generation of a third metastable state

    Dithienylethene-Based Gated Ambichromic Dyads

    Get PDF
    A set of dithienylethene (DTE)-based ambichromic dyads containing an acido-, photo-, and electrosensitive indolino[2,1-b]oxazolidine (BOX) unit displays gated photochromism. Ring opening of BOX prevents photoinduced electrocylization between open and closed forms of DTE. The photochromic performances are regenerated by two different pathways. NMR and electrochemical studies evidence interactions between indolenium and phenyl–thienyl sidearms

    13 metastable states arising from a simple multifunctional unimolecular system

    Get PDF
    A diarylethene core decorated with two benzooxazolidine side-arms through ethylenic spacers represents a smart example of multi-addressable system whose reversible responses could be selectively activated on demand. UV–Visible and NMR spectroscopies and electrochemical studies allow to overview its performances when stimulated by light, acid/base and electrons, then underlining its photochromic, acidochromic and electrochromic properties. The multichromophoric combination could be considered as multifunctional and multistate systems, as interconversions can be performed by different stimuli whereas each stimulus provides a specific metastable state

    Photochromic performance of a dithienylethene–indolinooxazolidine hybrid

    Get PDF
    The synthesis and the photochromic performance of a single-molecule system based on the covalent combination of dithienylperfluorocyclopentene and indolino[2,1-b]oxazolidine are described. The photoinduced interconversion between four states was shown to be deeply dependent on solvent and can be selectively controlled by adjusting the irradiation wavelength in chlorobenzene solutions. The color can be switched between colorless, yellow, pink and green on demand. This biphotochromic hybrid compound, despite poor fatigue resistance properties of the most conjugated colored isomer, displays large contrasts in structure, switching between zwitterionic and neutral character, independent chromophores and highly conjugated π systems

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore