231 research outputs found

    L'Espagne de Catalogne en Aragon, ou la tournĂ©e 1991 de l'association ForĂȘt MĂ©diterranĂ©enne

    Get PDF

    TournĂ©e 1992 de l'Association ForĂȘt MĂ©diterranĂ©enne au Parc national des Abruzzes Italie

    Get PDF
    Dossier composĂ© des trois articles suivants : -Sur les traces de l'Ours Marsicano, tournĂ©e 1992 de l'Association ForĂȘt MĂ©diterranĂ©enne au Parc national des Abruzzes, Italie, -La vĂ©gĂ©tation sylvatique du Parc national des Abruzzes, -La faune sauvage et la chasse dans le Parc national des Abruzzes

    Electromagnetic Dissociation of Nuclei in Heavy-Ion Collisions

    Get PDF
    Large discrepancies have been observed between measured Electromagnetic Dissociation(ED) cross sections and the predictions of the semiclassical Weiz\"acker-Williams-Fermi(WWF) method. In this paper, the validity of the semiclassical approximation is examined. The total cross section for electromagnetic excitation of a nuclear target by a spinless projectile is calculated in first Born approximation, neglecting recoil. The final result is expressed in terms of correlation functions and convoluted densities in configuration space. The result agrees with the WWF approximation to leading order(unretarded electric dipole approximation), but the method allows an analytic evaluation of the cutoff, which is determined by the details of the electric dipole transition charge density. Using the Goldhaber-Teller model of that density, and uniform charge densities for both projectile and target, the cutoff is determined for the total cross section in the nonrelativistic limit, and found to be smaller than values currently used for ED calculations. In addition, cross sections are calculated using a phenomenological momentum space cutoff designed to model final state interactions. For moderate projectile energies, the calculated ED cross section is found to be smaller than the semiclassical result, in qualitative agreement with experiment.Comment: 28 page

    An Analytical Framework to Describe the Interactions Between Individuals and a Continuum

    Full text link
    We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheeps. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided

    Near-Optimal Placement of MPI processes on Hierarchical NUMA Architectures

    Get PDF
    International audienceMPI process placement can play a deterministic role concerning the application performance. This is especially true with nowadays architecture (heterogenous, multicore with different level of caches, etc.). In this paper, we will describe a novel algorithm called TreeMatch that maps processes to resources in order to reduce the communication cost of the whole application. We have implemented this algorithm and will discuss its performance using simulation and on the NAS benchmarks

    Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li

    Full text link
    We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new Nijmegen local NN potential. We obtain an exact starting-energy-independent effective two-body interaction for a multi-shell, no-core, harmonic-oscillator model space. It is found that the resulting effective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements evaluated at starting energies selected in a simple way. These starting energies are closely related to the energies of the initial two-particle states in the ladder diagrams. The ``exact'' and approximate effective interactions are used to calculate the energy spectrum of 6Li in order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request). University of Arizona preprint, Number unassigne

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure
    • 

    corecore