3 research outputs found

    The Elimination of the Yeast [PSI+] Prion by Guanidine Hydrochloride is the result of Hsp104 Inactivation

    No full text
    In the yeast Saccharomyces cerevisiae, Sup35p (eRF3), a subunit of the translation termination complex, can take up a prion-like, self-propagating conformation giving rise to the non-Mendelian [PSI+] determinant. The replication of [PSI+] prion seeds can be readily blocked by growth in the presence of low concentrations of guanidine hydrochloride (GdnHCl), leading to the generation of prion-free [psi-] cells. Here, we provide evidence that GdnHCl blocks seed replication in vivo by inactivation of the molecular chaperone Hsp104. Although growth in the presence of GdnHCl causes a modest increase in HSP104 expression (20-90%), this is not sufficient to explain prion curing. Rather, we show that GdnHCl inhibits two different Hsp104-dependent cellular processes, namely the acquisition of thermotolerance and the refolding of thermally denatured luciferase. The inhibitory effects of GdnHCl protein refolding are partially suppressed by elevating the endogenous cellular levels of Hsp104 using a constitutive promoter. The kinetics of GdnHCl-induced [PSI+] curing could be mimicked by co-expression of an ATPase-negative dominant HSP104 mutant in an otherwise wild-type [PSI+] strain. We suggest that GdnHCl inactivates the ATPase activity of Hsp104, leading to a block in the replication of [PSI+] seeds

    Specificity of Class II Hsp40 Sis1 in Maintenance of Yeast Prion [RNQ(+)]

    No full text
    Sis1 and Ydj1, functionally distinct heat shock protein (Hsp)40 molecular chaperones of the yeast cytosol, are homologs of Hdj1 and Hdj2 of mammalian cells, respectively. Sis1 is necessary for propagation of the Saccharomyces cerevisiae prion [RNQ(+)]; Ydj1 is not. The ability to function in [RNQ(+)] maintenance has been conserved, because Hdj1 can function to maintain Rnq1 in an aggregated form in place of Sis1, but Hdj2 cannot. An extended glycine-rich region of Sis1, composed of a region rich in phenylalanine residues (G/F) and another rich in methionine residues (G/M), is critical for prion maintenance. Single amino acid alterations in a short stretch of amino acids of the G/F region of Sis1 that are absent in the otherwise highly conserved G/F region of Ydj1 cause defects in prion maintenance. However, there is some functional redundancy within the glycine-rich regions of Sis1, because a deletion of the adjacent glycine/methionine (G/M) region was somewhat defective in propagation of [RNQ(+)] as well. These results are consistent with a model in which the glycine-rich regions of Hsp40s contain specific determinants of function manifested through interaction with Hsp70s
    corecore