5 research outputs found

    Myoglobins - The Link Between Discoloration And Lipid Oxidation In Muscle And Meat

    Get PDF
    Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.29612701278Kagen, L.J., (1973) Myoglobin. Biochemical, Physiological, and Clinical Aspects, , Columbia University Press: New YorkBrunori, M., (2001) Trends Biochem. Sci., 26, p. 209Brunori, M., (2001) Trends Biochem. Sci., 26, p. 21Wittenberg, J.B., Wittenberg, B.A., (2003) J. Exp. Biol., 206, p. 2011Frauenfelder, H., Fenimore, P.W., McMahon, B.H., (2002) Biophys. Chem., 98, p. 35Brunori, M., (2000) Biophys. Chem., 86, p. 221Sharma, V.S., Magde, D., (1999) Methods, 19, p. 494Griddings, G.G., (1977) Crit. Rev. Food Nutr., 9, p. 81Livingston, D.J., Brown, W.D., (1981) Food Technol., MAY, p. 244Antonini, E., Brunori, M., (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, , North-Holland Publishing Company: AmsterdamSchläfer, H.L., Gliemann, G., (1969) Basic Principles of Ligand Field Theory, , John Wiley & Sons Ltd.: LondonEnemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, p. 339Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New YorkOlson, J.S., Phillips, G.N., (1996) J. Biol. Chem., 271, p. 17593Springer, B.A., Sligar, S.G., Olson, J.S., Phillips, G.N., (1994) Chem. Rev., 94, p. 699Olson, J.S., Phillips, G.N., (1997) J. Biol. Ing. Chem., 2, p. 544Copeland, D.M., West, A.H., Richter-Addo, G.B., (2003) Proteins: Struct., Funct., Genet., 53, p. 182Brucker, E.A., Olson, J.S., Ikeda-Saito, M., Phillips, G.N., (1998) Proteins: Struct., Funct., Genet., 30, p. 352Spiro, T.G., Kozlowski, P.M., (2001) Acc. Chem. Res., 34, p. 137Clarke, M.J., Gaul, J.B., (1993) Structure and Bonding, , Clarke, M. J.Goodenough, J. B.Ibers, J. A.Jørgensen, C. K.Mingos, D. M. P.Neilands, J. B.Palmer, G. A.Reinen, D.Sadler, P. J.Weiss, R.Williams, R. J. P., eds.Springer-Verlag: BerlinCarducci, M.D., Pressprich, M.R., Coppens, P., (1997) J. Am. Chem. Soc., 119, p. 2669Hoshino, M., Laverman, L.E., Ford, P.C., (1999) Coord. Chem. Rev., 187, p. 75Andersen, H.J., Johansen, H.S., Shek, C.K., Skibsted, L.H., (1990) Z. Lebensm. Unters. For., 191, p. 293Duprat, A.F., Traylor, T.G., Wu, G.Z., Coletta, M., Sharma, V.S., Walda, K.N., Magde, D., (1995) Biochemistry, 34, p. 2634Decatur, S.M., Franzen, S., DePillis, G.D., Dyer, R.B., Woodruff, W.H., Boxer, S.G., (1996) Biochemistry, 35, p. 4939Dierks, E.A., Hu, S.Z., Vogel, K.M., Yu, A.E., Spiro, T.G., Burstyn, J.N., (1997) J. Am. Chem. Soc., 119, p. 7316Zhao, Y.D., Hoganson, C., Babcock, G.T., Marletta, M.A., (1998) Biochemistry, 37, p. 12458Migita, C.T., Salerno, J.C., Masters, B.S., Martasek, P., McMillan, K., Ikeda-Saito, M., (1997) Biochemistry, 36, p. 10987Merryweather, J., Summers, F., Vitello, L.B., Erman, J.E., (1998) Arch. Biochem. Biophys., 358, p. 359Wanat, A., Gdula-Argasinska, J., Rutkowska-Zbik, D., Witko, M., Stochel, G., Van Eldik, R., (2002) J. Biol. Ing. Chem., 7, p. 165Laverman, L.E., Hoshino, M., Ford, P.C., (1997) J. Am. Chem. Soc., 119, p. 12663Qiu, Y., Sutton, L., Riggs, A.F., (1998) J. Biol. Chem., 273, p. 23426Garry, D.J., Kanatous, S.B., Mammen, P.P.A., (2003) Trends Cardiovas. Med., 13, p. 111Shikama, K., (1998) Chem. Rev., 98, p. 1357Brantley Jr., R.E., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W., Olson, J.S., (1993) J. Biol. Chem., 268, p. 6995Andersen, H.J., Bertelsen, G., Skibsted, L.H., (1988) Acta Chem. Scand. A, 42, p. 226Gutzke, D., Trout, G.R., (2002) J. Agric. Food Chem., 50, p. 2673Bruun-Jensen, L., Skibsted, L.H., (1996) Meat Sci., 44, p. 145Jakobsen, M., Bertelsen, G., (2002) J. Muscle Foods, 13, p. 143Bertelsen, G., Skibsted, L.H., (1987) Meat Sci., 19, p. 243Andersen, H.J., Bertelsen, G., Skibsted, L.H., (1990) Meat Sci., 28, p. 87Mikkelsen, A., Juncher, D., Skibsted, L.H., (1999) Meat Sci., 51, p. 155Mikkelsen, A., Skibsted, L.H., (1992) Z. Lebensm. Unters. For., 194, p. 9Skibsted, L.H., Mikkelsen, A., Bertelsen, G., (1994) Flavors of Meat, Meat Products and Seafoods, , Shahidi, F., ed.Blackie Academic & Professional: LondonMøller, J.K.S., Skibsted, L.H., (2002) Chem. Rev., 102, p. 1167Skibsted, L.H., (1992) The Chemistry of Muscle-based Foods, , Johnston, D. E.Knight, M. K.Ledward, D. A., eds.The Royal Society of Chemistry: Cambridge, UKKoppenol, W.H., (1994) FEBS Lett., 347, p. 5Sebranek, J.G., Fox, J.B.J., (1985) J. Sci. Food. Agric., 36, p. 1169Hoshino, M., Maeda, M., Konishi, M., Seki, H., Ford, P.C., (1996) J. Am. Chem. Soc., 118, p. 5702Pegg, R.B., Shahidi, F., (2000) Nitrite Curing of Meat. The N-Nitrosamine Problem and Nitrite Alternatives, , Food & Nutrition Press, Inc.: ConnecticutBonnett, R., Chandra, S., Charalambides, A.A., Sales, K.D., Scourides, P.A., (1980) J. Chem. Soc., Perkin Trans. 1, 8, p. 1706Arnold, E.V., Bohle, D.S., (1996) Methods Enzymol., 269, p. 41Møller, J.K.S., Skibsted, L.H., (2004) Chem. Eur.J., 10, p. 2291Frauenfelder, H., McMahon, B.H., Austin, R.H., Chu, K., Groves, J.T., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, p. 2370Brunori, M., Gibson, Q.H., (2001) Embo Reports, 2, p. 674Møller, J.K.S., Jensen, J.S., Olsen, M.B., Skibsted, L.H., Bertelsen, G., (2000) Meat Sci., 54, p. 399Andersen, H.J., Rasmussen, M.A., (1992) Int. J. Food Sci. Technol., 27, p. 1Andersen, H.J., Skibsted, L.H., (1992) J. Agric. Food Chem., 40, p. 1741Møller, J.K.S., Bertelsen, G., Skibsted, L.H., (2002) Meat Sci., 60, p. 421Baron, C.P., Andersen, H.J., (2002) J. Agric. Food Chem., 50, p. 3887Irwin, J.A., Ostdal, H., Davies, M.J., (1999) Arch. Biochem. Biophys., 362, p. 94Giulivi, C., Cadenas, E., (1994) Methods Enzymol., 233, p. 189Grinberg, L.N., O'Brien, P.J., Hrkal, Z., (1999) Free Radical Biol. Med., 27, p. 214Laranjinha, J., Vieira, O., Almeida, L., Madeira, V., (1996) Biochem. Pharmacol., 51, p. 395Baron, C.P., Skibsted, L.H., Andersen, H.J., (2002) J. Agric. Food Chem., 50, p. 883Harrington, J.P., Newton, P., Crumpton, T., Keaton, L., (1993) Int. J. Biochem., 25, p. 665Saifutdinov, R.G., Larina, L.I., Vakul'skaya, T.I., Voronkov, M.G., (2001) Electron Paramagnetic Resonance in Biochemistry and Medicine, , Kluwer Academic/Plenum Publishers: New YorkHendrickson, S.C., St. Louis, J.D., Lowe, J.E., Abdelaleem, S., (1997) Mol. Cell. Biochem., 166, p. 85Coutron-Gambotti, C., Gandemer, G., (1999) Food Chem., 64, p. 95Vestergaard, C.S., Schivazappa, C., Virgili, R., (2000) Meat Sci., 55, p. 1Henry, G.E., Momin, R.A., Nair, M.G., Dewitt, D.L., (2002) J. Agric. Food Chem., 50, p. 2231Gunther, M.R., Sampath, V., Caughey, W.S., (1999) Free Radical Biol. Med., 26, p. 1388Mikkelsen, A., Skibsted, L.H., (1995) Z. Lebensm. Unters. For., 200, p. 171Inouye, M., Mio, T., Sumino, K., (1999) Clinica Chimica Acta, 285, p. 35Inouye, M., Mio, T., Sumino, K., (1999) Metabolism, 48, p. 205Warren, J.D., Blumbergs, P.C., Thompson, P.D., (2002) Muscle & Nerve, 25, p. 332Roy, A., Sen, S., Chakraborti, A.S., (2004) Free Radical Res., 38, p. 139Eiserich, J.P., Patel, R.P., O'Donnell, V.B., (1998) Mol. Aspects Med., 19, p. 221Hogg, N., Kalyanaraman, B., (1999) Biochim. Biophys. Acta, 1411, p. 378Koppenol, W.H., (2001) Redox Report, 6, p. 339Jourd'heuil, D., Mills, L., Miles, A.M., Grisham, M.B., (1998) Nitric Oxide Biol. Chem., 2, p. 37Gorbunov, N.V., Tyurina, Y.Y., Salama, G., Day, B.W., Claycamp, H.G., Argyros, G., Elsayed, N.M., Kagan, V.E., (1998) Biochem. Biophys. Res. Commun., 244, p. 647Flogel, U., Decking, U.K.M., Godecke, A., Schrader, J., (1999) J. Mol. Cell. Cardiol., 31, p. 827Godecke, A., Molojavyi, A., Heger, J., Flogel, U., Ding, Z.P., Jacoby, C., Schrader, J.R., (2003) J. Biol. Chem., 278, p. 21761Kanner, J., Harel, S., Shagalovich, J., Berman, S., (1984) J. Agric. Food Chem., 32, p. 512Morrissey, P.A., Tichivangana, J.Z., (1985) Meat Sci., 14, p. 175Kanner, J., (1996) Methods Enzymol., 269, p. 218Møller, J.K.S., Sosniecki, L., Skibsted, L.H., (2002) Biochim. Biophys. Acta, 1570, p. 129Herold, S., Rehmann, F.J.K., (2001) J. Biol. Ing. Chem., 6, p. 543Kroger-Ohlsen, M.V., Skibsted, L.H., (2000) Food Chem., 70, p. 209Connolly, B.J., Brannan, R.G., Decker, E.A., (2002) J. Agric. Food Chem., 50, p. 5220Exner, M., Herold, S., (2000) Chem. Res. Toxicol., 13, p. 287Herold, S., Exner, M., Boccini, F., (2003) Chem. Res. Toxicol., 16, p. 390Møller, J.K.S., Nannerup, L., Skibsted, L.H., (2005) Meat Sci., 69, p. 71Herold, S., Shivashankar, K., Mehl, M., (2002) Biochemistry, 41, p. 13460Romero, N., Radi, R., Linares, E., Augusto, O., Detweiler, C.D., Mason, R.P., Denicola, A., (2003) J. Biol. Chem., 278, p. 44049Grzelak, A., Balcerczyk, A., Mateja, A., Bartosz, G., (2001) Biochim. Biophys. Acta, 1528, p. 97Bourassa, J.L., Ives, E.P., Marqueling, A.L., Shimanovich, R., Groves, J.T., (2001) J. Am. Chem. Soc., 123, p. 5142Brannan, R.G., Decker, E.A., (2002) Meat Sci., 62, p. 229Brannan, R.G., Decker, E.A., (2001) J. Agric. Food Chem., 49, p. 3074Ostdal, H., Sorensen, G., Daneshvar, B., Skibsted, L.H., (2003) Eur. Food Res. Technol., 216, p. 23Minetti, M., Scorza, G., Pietraforte, D., (1999) Biochemistry, 38, p. 2078Witting, P.K., Mauk, A.G., Douglas, D.J., Stocker, R., (2001) Biochem. Biophys. Res. Commun., 286, p. 35

    Photonic molecules and spectral engineering

    Full text link
    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally-tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure
    corecore