74 research outputs found

    Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling

    Full text link
    We theoretically study energy relaxation via LO-phonon emission in an excited one-dimensional electron gas confined in a GaAs quantum wire structure. We find that the inclusion of phonon renormalization effects in the theory extends the LO-phonon dominated loss regime down to substantially lower temperatures. We show that a simple plasmon-pole approximation works well for this problem, and discuss implications of our results for low temperature electron heating experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Fractional quantum Hall effect in higher Landau levels

    Full text link
    We investigate, using finite size numerical calculations, the spin-polarized fractional quantum Hall effect (FQHE) in the first excited Landau level (LL). We find evidence for the existence of an incompressible state at ν=73=2+13\nu = \frac{7}{3} = 2+\frac{1}{3}, but not at ν=2+25\nu = 2+\frac{2}{5}. Surprisingly, the 7/3 state is found to be strongest at a finite thickness. The structure of the low- lying excited states is found to be markedly different from that in the lowest LL. This study also rules out FQHE at a large number of odd-denominator fractions in the lowest LL.Comment: 7 pages RevTex, 4 figure

    An exchange-correlation energy for a two-dimensional electron gas in a magnetic field

    Full text link
    We present the results of a variational Monte Carlo calculation of the exchange-correlation energy for a spin-polarized two-dimensional electron gas in a perpendicular magnetic field. These energies are a necessary input to the recently developed current-density functional theory. Landau-level mixing is included in a variational manner, which gives the energy at finite density at finite field, in contrast to previous approaches. Results are presented for the exchange-correlation energy and excited-state gap at ν=\nu = 1/7, 1/5, 1/3, 1, and 2. We parameterize the results as a function of rsr_s and ν\nu in a form convenient for current-density functional calculations.Comment: 36 pages, including 6 postscript figure

    Interlayer Exchange Interactions, SU(4) Soft Waves and Skyrmions in Bilayer Quantum Hall Ferromagnets

    Full text link
    The Coulomb exchange interaction is the driving force for quantum coherence in quantum Hall systems. We construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferromagnets, which is characterized by the SU(4) isospin structure. By taking a continuous limit, the Hamiltonian gives rise to the SU(4) nonlinear sigma model in the von-Neumann-lattice formulation. The ground-state energy is evaluated at filling factors ν=1,2,3,4\nu =1,2,3,4. It is shown at ν=1\nu =1 that there are 3 independent soft waves, where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is also shown at ν=1\nu =1 that there are 3 independent skyrmion states apart from the translational degree of freedom. They are CP3^{3} skyrmions enjoying the spin-charge entanglement confined within the \LLL.Comment: 12 pages, 2 figure

    Growth Models and Models of Turbulence : A Stochastic Quantization Perspective

    Full text link
    We consider a class of growth models and models of turbulence based on the randomly stirred fluid. The similarity between the predictions of these models, noted a decade earlier, is understood on the basis of a stochastic quantization scheme.Comment: 3 page

    Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation

    Full text link
    We report a modulational instability (MI) analysis of a mathematical model appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope approximation. Theoretically predicted MI properties are found to be in good agreement with numerical simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria

    Electron Localization in a 2D System with Random Magnetic Flux

    Full text link
    Using a finite-size scaling method, we calculate the localization properties of a disordered two-dimensional electron system in the presence of a random magnetic field. Below a critical energy EcE_c all states are localized and the localization length ξ\xi diverges when the Fermi energy approaches the critical energy, {\it i.e.} ξ(E)EEcν\xi(E)\propto |E-E_c|^{-\nu}. We find that EcE_c shifts with the strength of the disorder and the amplitude of the random magnetic field while the critical exponent (ν4.8\nu\approx 4.8) remains unchanged indicating universality in this system. Implications on the experiment in half-filling fractional quantum Hall system are also discussed.Comment: 4 pages, RevTex 3.0, 5 figures(PS files available upon request), #phd1

    Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields

    Full text link
    By varying the orientation of the applied magnetic field with respect to the normal of a two-dimensional electron gas, the chemical potential and the specific heat reveal persistent spin splitting in all field ranges. The corresponding shape of the thermodynamic quantities distinguishes whether the Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the splitting. The interplay of the tilting of the magnetic field and RSOI resulted to an amplified splitting in weak fields. The effects of changing the RSOI strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure

    Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states

    Full text link
    The inter-Landau-level spin excitations of quantum Hall states at filling factors nu=2 and 4/3 are investigated by exact numerical diagonalization for the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings are comparable. The relevant quasiparticles and their interactions are studied, including stable spin wave and skyrmion bound states. For nu=2, a spin instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field approximation. However, for nu=4/3 a new and unexpected quantum phase transition is found which involves a gradual change from paramagnetic to ferromagnetic occupancy of the partially filled Landau level as epsilon is decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let
    corecore