417 research outputs found

    Space-Time Distribution of G-Band and Ca II H-Line Intensity Oscillations in Hinode/SOT-FG Observations

    Full text link
    We study the space-time distributions of intensity fluctuations in 2 - 3 hour sequences of multi-spectral, high-resolution, high-cadence broad-band filtergram images (BFI) made by the SOT-FG system aboard the Hinode spacecraft. In the frequency range 5.5 < f < 8.0 mHz both G-band and Ca II H-line oscillations are suppressed in the presence of magnetic fields, but the suppression disappears for f > 10 mHz. By looking at G-band frequencies above 10 mHz we find that the oscillatory power, both at these frequencies and at lower frequencies too, lies in a mesh pattern with cell scale 2 - 3 Mm, clearly larger than normal granulation, and with correlation times on the order of hours. The mesh pattern lies in the dark lanes between stable cells found in time-integrated G-band intensity images. It also underlies part of the bright pattern in time-integrated H-line emission. This discovery may reflect dynamical constraints on the sizes of rising granular convection cells together with the turbulence created in strong intercellular downflows.Comment: 24 pages, 15 figure

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Mixed mode data clustering: an approach based on tectrachoric correlations

    Get PDF
    In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations and wethen estimate the scores of each latent variable and construct adata matrix with continuous variables to be used in fully Guassianmixture models or in the k-means cluster analysis. The calculationof the expected a posteriori (EAP) estimates may proceed by simplyconsidering a limited number of quadrature points. Results on asimulation study and on a real data set are reported

    Reference genome assembly for Australian Ascochyta rabiei Isolate ArME14

    Get PDF
    Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2. Many of the predicted genes missing from the ArD2 assembly were in genomic regions adjacent to AT-rich sequence. We compared the complement of predicted transcription factors and secreted proteins for the two A. rabiei genome assemblies and found that the isolates contain almost the same set of proteins. The small number of differences could represent real differences in the gene complement between isolates or possibly result from the different sequencing methods used. Prediction pipelines were applied for carbohydrate-active enzymes, secondary metabolite clusters and putative protein effectors. We predict that ArME14 contains between 450 and 650 CAZymes, 39 putative protein effectors and 26 secondary metabolite clusters

    Multiresolution analysis of active region magnetic structure and its correlation with the Mt. Wilson classification and flaring activity

    Full text link
    Two different multi-resolution analyses are used to decompose the structure of active region magnetic flux into concentrations of different size scales. Lines separating these opposite polarity regions of flux at each size scale are found. These lines are used as a mask on a map of the magnetic field gradient to sample the local gradient between opposite polarity regions of given scale sizes. It is shown that the maximum, average and standard deviation of the magnetic flux gradient for alpha, beta, beta-gamma and beta-gamma-delta active regions increase in the order listed, and that the order is maintained over all length-scales. This study demonstrates that, on average, the Mt. Wilson classification encodes the notion of activity over all length-scales in the active region, and not just those length-scales at which the strongest flux gradients are found. Further, it is also shown that the average gradients in the field, and the average length-scale at which they occur, also increase in the same order. Finally, there are significant differences in the gradient distribution, between flaring and non-flaring active regions, which are maintained over all length-scales. It is also shown that the average gradient content of active regions that have large flares (GOES class 'M' and above) is larger than that for active regions containing flares of all flare sizes; this difference is also maintained at all length-scales.Comment: Accepted for publication in Solar Physic

    Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}

    Full text link
    For describing the first-order isostructural valence phase transition in mixed valence compounds we develop a new approach based on the lattice Anderson model. We take into account the Coulomb interaction between localized f and conduction band electrons and two mechanisms of electron-lattice coupling. One is related to the volume dependence of the hybridization. The other is related to local deformations produced by f- shell size fluctuations accompanying valence fluctuations. The large f -state degeneracy allows us to use the 1/N expansion method. Within the model we develop a mean-field theory for the first-order valence phase transition in YbInCu_{4}. It is shown that the Coulomb interaction enhances the exchange interaction between f and conduction band electron spins and is the driving force of the phase transition. A comparison between the theoretical calculations and experimental measurements of the valence change, susceptibility, specific heat, entropy, elastic constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a good quantitative agreement is found. On the basis of the model we describe the evolution from the first-order valence phase transition to the continuous transition into the heavy-fermion ground state in the series of compounds YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    Parameters of the Magnetic Flux inside Coronal Holes

    Full text link
    Parameters of magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA images showed that the density of the net magnetic flux, BnetB_{{\rm net}}, does not correlate with the associated solar wind speeds, VxV_x. Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between BnetB_{{\rm net}} and VxV_x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of complexity of the magnetic field, the filling factor, f(r) f(r), was calculated as a function of spatial scales. In CHs, f(r)f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal structure and highly intermittent, burst-like energy release regime. The absence of necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic

    A paradigm in immunochemistry, revealed by monoclonal antibodies to spatially distinct epitopes on Syntenin-1

    Get PDF
    Syntenin-1 is an essential multi-functional adaptor protein, which has multiple roles in membrane trafficking and exosome biogenesis, as well as scaffolding interactions with either the actin cytoskeleton or focal adhesions. However, how this functional multiplicity relates to syntenin-1 distribution in different endosome compartments or other intracellular locations and its underlying involvement in cancer pathogenesis have yet to be fully defined. To help facilitate the investigation of syntenin-1 biology, we developed two specific monoclonal antibodies (Synt-2C6 and Synt-3A11) to spatially distinct linear sequence epitopes on syntenin-1, which were each designed to be unique at the six-amino acid level. These antibodies produced very different intracellular staining patterns, with Synt-2C6 detecting endosomes and Synt-3A11 producing a fibrillar staining pattern suggesting a cytoskeletal localisation. Treatment of cells with Nocodazole altered the intracellular localisation of Synt-3A11, which was consistent with the syntenin-1 protein interacting with microtubules. In prostate tissue biopsies, Synt-3A11 defined atrophy and early-stage prostate cancer, whereas Synt-2C6 only showed minimal interaction with atrophic tissue. This highlights a critical need for site-specific antibodies and a knowledge of their reactivity to define differential protein distributions, interactions and functions, which may differ between normal and malignant cells.Ian R. D. Johnson, Alexandra Sorvina, Jessica M. Logan, Courtney R. Moore, Jessica K. Heatlie, Emma J. Parkinson-Lawrence, Stavros Selemidis, John J. O’Leary, Lisa M. Butler and Douglas A. Brook

    Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    Get PDF
    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump pump, Stokes signal, and Raman coherence idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions
    • …
    corecore