11 research outputs found
Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus
Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growth on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. Overall, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome
Scenario of Accelerating Universe from the Phenomenological \Lambda- Models
Dark matter, the major component of the matter content of the Universe,
played a significant role at early stages during structure formation. But at
present the Universe is dark energy dominated as well as accelerating. Here,
the presence of dark energy has been established by including a time-dependent
term in the Einstein's field equations. This model is compatible with
the idea of an accelerating Universe so far as the value of the deceleration
parameter is concerned. Possibility of a change in sign of the deceleration
parameter is also discussed. The impact of considering the speed of light as
variable in the field equations has also been investigated by using a well
known time-dependent model.Comment: Latex, 9 pages, Major change