3 research outputs found

    Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2

    Get PDF
    Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This paper provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox-Ingersoll-Ross and Ornstein-Uhlenbeck equations respectively.stochastic differential equations, parameter estimation, maximum likelihood, simulation, moments

    Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations

    No full text
    Maximum likelihood (ML) estimates of the parameters of stochastic differential equations (SDEs) are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed form expression for the transitional density of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This paper provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox-IngersollRoss and Ornstein-Uhlenbeck equations respectively.stochastic differential equations, parameter estimation, maximum likelihood, simulation, moments

    Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation

    No full text
    Many stochastic differential equations (SDEs) do not have readily available closed-form expressions for their transitional probability density functions (PDFs). As a result, a large number of competing estimation approaches have been proposed in order to obtain maximum-likelihood estimates of their parameters. Arguably the most straightforward of these is one in which the required estimates of the transitional PDF are obtained by numerical solution of the Fokker-Planck (or forward-Kolmogorov) partial differential equation. Despite the fact that this method produces accurate estimates and is completely generic, it has not proved popular in the applied literature. Perhaps this is attributable to the fact that this approach requires repeated solution of a parabolic partial differential equation to obtain the transitional PDF and is therefore computationally quite expensive. In this paper, three avenues for improving the reliability and speed of this estimation method are introduced and explored in the context of estimating the parameters of the popular Cox-Ingersoll-Ross and Ornstein-Uhlenbeck models. The recommended algorithm that emerges from this investigation is seen to offer substantial gains in reliability and computational time.stochastic differential equations, maximum likelihood, finite difference, finite element, cumulative distribution function, interpolation.
    corecore