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1 Introduction

The notion of a system of stochastic differential equations (SDEs), defined as a deterministic system
of differential equations perturbed by random disturbances that are not necessarily small, has been
used profitably in a variety of disciplines including inter alia engineering, environmetrics, physics,
population dynamics and medicine. SDEs are also central to much of modern finance theory and
have been widely used to model the behaviour of key variables such as the instantaneous short-term
interest rate, asset prices, asset returns and their volatility (see Sundaresan, 2000). Consequently, the
estimation of the parameters of SDEs from discretely-sampled data has received substantial attention
in the financial econometrics literature, particularly in the last ten years. It is now reasonable to
conjecture that this area is maturing rapidly and is therefore fertile ground for a comprehensive
review. Previous surveys of the area have been carried out by Shoji and Ozaki (1997), Jensen and
Poulsen (2002), and Durham and Gallant (2002) but all of these papers are limited in scope, in the
sense that attention in each case is focussed on a relatively narrow selection of existing estimation
methods. The aim of this paper is to provide a comprehensive overview and critical evaluation
of many of the existing methods for estimating the parameters of SDEs. The emphasis is on the
practical implementation of the various techniques and so effort has been expended in attempting
to summarise the details of the algorithms in an accessible way1. In each case, comments are made
about the general applicability of the method, its ease of use and when it is appropriate to apply
it. Monte Carlo experiments are performed in order to compare the methods with respect to the
accuracy of the parameter estimates and speed.

While this paper attempts to be comprehensive in terms of the variety of estimation methods currently
available, it cannot claim to be exhaustive. The estimation methods surveyed here deal exclusively
with estimating the parameter vector of the general one-dimensional, time-homogeneous SDE from a
single sample of observations at discrete times. As a consequence there are three areas which are not
covered in this paper, namely, multi-dimensional models, including latent factor models2, the class of
estimators that treat the parameters of the drift and diffusion functions separately (see, for example,
Yoshida, 1992; Aı̈t-Sahalia, 1996a; Bandi and Phillips, 2003; Bandi and Phillips, 2005; and Phillips
and Yu, 2005), and estimators that require panel data for their implementation (see, for example,
Hurn and Lindsay, 1997; and McDonald and Sandal, 1999).

A formal statement of the parameter estimation problem to be addressed in this paper is as follows.
Given the one-dimensional time-homogeneous SDE

dX = µ(X; θ) dt + g(X; θ) dW (1)

the task is to estimate the parameters θ from a sample of (N + 1) observations X0, · · · , XN of the
1To aid in understanding the details of the implementation, the C-code used to implement each estimation method

will be made available on request.
2In the context of financial econometrics, this means that estimation methods for models of stochastic volatility are

ignored. An excellent survey is to be found in Shephard (2005) and the readings therein.
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process at known times t0, . . . , tN where µ(x; θ) and g2(x; θ) are assumed to be prescribed functions
of state.

The maximum-likelihood (ML) estimate of θ is generated by minimising the negative log-likelihood
function of the observed sample, namely

− logL(θ) = − log f0(X0 |θ)−
N−1∑

k=0

log f(Xk+1 |Xk; θ) , (2)

with respect to the parameters θ. In this expression, f0(X0 |θ) is the density of the initial state
and f(Xk+1 |Xk;θ) ≡ f

(
(Xk+1, tk+1) | (Xk, tk);θ) is the value of the transitional probability density

function (PDF) at (Xk+1, tk+1) for a process starting at (Xk, tk) and evolving to (Xk+1, tk+1) in
accordance with equation (1). Note that the Markovian property of equation (1) ensures that the
transitional PDF satisfies the Fokker-Planck equation

∂f

∂t
=

∂

∂x

(1
2

∂(g2(x; θ)f)
∂x

− µ(x; θ)f
)

x ∈ S, (3)

with suitable initial and boundary conditions3. Unfortunately, exact maximum likelihood (EML)
estimation is only feasible in the rare cases in which a closed-form solution to this initial boundary
value problem is available. In these cases, EML estimation of the parameters is straightforward since
the negative log-likelihood can be computed exactly for any combination of the parameters θ and its
value minimised.

Since EML is usually infeasible, a large number of competing estimation methods have been devel-
oped. Figure 1 provides a classification of these estimation procedures into two broad categories.
Likelihood-based methods provide one obvious choice as a major category, given the prominent posi-
tion of ML estimation in econometrics. The other major category includes those methods which may
be loosely labelled as “sample DNA matching” procedures. The latter encompass methods which
differ greatly in their mode of implementation, but which all have in common the fact that they
attempt to match some feature or characteristic of the data to a theoretical counterpart of the model
by choice of parameters. Of course, this classification represents a subjective view and others are
possible. For example, methods could be grouped on whether or not they are simulation based. In
any event, there will always be difficult cases in which the classification is not straightforward. A
pertinent case in point is estimation based on the characteristic function. This approach spans both
the categories proposed here. In Figure 1 it has been placed under sample DNA matching reflecting
the view that, in practice, it is invariably implemented in a moment-matching context.

While for most part this paper makes no claims to originality, given that it is mainly a critical
evaluation of existing work, there are a number of interesting issues which emerge that have not yet
been recognised in the published literature. In particular, contributions are made in the sections

3A full derivation of the Fokker-Planck equation, based on the flow of probability and the conservation of probability

mass, is provided in Appendix 1. This derivation provides a more physical interpretation of the equation than the

purely analytical approach favoured by standard texts (see, for example, Karlin and Taylor, 1981).
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Classification of Estimation Procedures when
Exact Maximum Likelihood is infeasible.

↙ ↘
Likelihood-based procedures Sample DNA matching procedures

| |
Solve Fokker-Planck equation (PDE)

Lo, 1988; Hurn and Lindsay, 1999;
Jensen and Poulsen, 2002

Discrete Maximum Likelihood (DML)
Florens-Zmirou, 1989; Elerian, 1998;
Shoji and Ozaki, 1997

Hermite Polynomial Expansion (HPE)
Aı̈t-Sahalia, 2002; Bakshi and Ju, 2005

Simulated Maximum Likelihood (SML)
Pederson, 1995; Brandt and Santa-Clara,
2002; Hurn, Lindsay and Martin, 2003

Markov Chain Monte Carlo (MCMC)
Elerian, Chib and Shephard, 2001;
Jones, 1998; Eraker, 2001; Roberts
and Stramer, 2001

General Method of Moments (GMM)
Hansen, 1992; Chan et al., 1992;
Hansen and Scheinkman, 1995,
Duffie and Singleton, 1993

Indirect Estimation (IE)
Gourieroux, Montfort and Renault,
1993; Gallant and Tauchen, 1996

Characteristic Function (CF)
Singleton, 2001; Chacko and
Viceira, 2003

Estimating Functions (EF)
Bibby and Sorensen, 1995; Kessler and
Sorensen, 1999; Sorensen, 2000

Match to Marginal Density (MMD)
Aı̈t-Sahalia, 1996b

Figure 1: Schematic classification of estimation techniques.

dealing with the numerical solution of the Fokker-Planck equation and the treatment of discrete
maximum likelihood respectively. In the former, it is recognised that a more efficient implementation
of the numerical scheme can be achieved using the transitional cumulative distribution function (CDF)
rather than the transitional PDF itself. The procedure based on the transitional CDF provides a
starting condition that can be represented numerically unlike the traditional approach based on a
delta function initial condition which has no numerical representation. In terms of discrete maximum
likelihood, a potential difficulty in using a likelihood function based on the Milstein approximation
introduced by Elerian (1998) and implemented in Durham and Gallant (2002) is highlighted. In order
to implement the likelihood based on the Milstein scheme, it may be necessary to alias observations
to ensure that they fall within the domain of the likelihood function.

The remainder of this paper comprises five sections. Section 2 introduces the benchmark models
considered in this paper. The estimation procedures are all demonstrated using the square-root or
CIR process (Cox, Ingersoll and Ross, 1985) and the Ornstein-Uhlenbeck (OU) process associated
with Vasicek (1977). Not only are these models relevant in the context of financial econometrics,
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but they also have closed-form expressions for their transitional PDFs allowing estimation by EML.
The parameter values so obtained provide a useful benchmark with respect to which other estimation
methods may be assessed. Section 3 discusses the likelihood-based estimation methods. Section 4
outlines estimation methods that try to match properties of the sample to a theoretical counter-
part. Section 5 introduces the Monte Carlo experiments that involve applying the various estimation
techniques to the benchmark models. Section 6 concludes.

2 Benchmark models

Given the asymptotic efficiency and consistency properties enjoyed by ML estimation (Dacunha-
Castelle and Florens-Zmirou, 1986), it provides a natural benchmark against which the various es-
timation procedures surveyed in this paper may be compared. Given the desire to use EML as a
benchmark method, it is necessary to provide benchmark models which have known closed-form ex-
pressions for their transitional PDFs. Two such models that are relevant in the context of financial
econometrics are now discussed.

Cox, Ingersoll and Ross model The square-root process proposed by Cox, Ingersoll and Ross
(1985) as a model of the instantaneous short term interest rate, commonly referred to as the CIR
model, evolves according to the SDE

dX = α(β −X) dt + σ
√

X dW (4)

where α (speed of adjustment), β (the mean interest rate) and σ (volatility control) are positive
parameters to be estimated. Thus the CIR process exhibits mean reversion of X to the state X = β.
Most importantly, however, the properties g(0;θ) = 0 and µ(0;θ) > 0 ensure that S = R+.

The transitional PDF of the CIR model is derived in Appendix 2. It is the non-central chi-squared
distribution

f(x |Xk; θ) = c
(v

u

) q
2
e−(

√
u−√v)2 e−2

√
uvIq(2

√
uv) (5)

where c, u, v and ν are defined respectively by

c =
2α

σ2(1− e−α(tk+1−tk))
, u = cXke

−α(tk+1−tk) , v = cx , ν =
2αβ

σ2
− 1 . (6)

This transitional PDF may now be used in combination with expression (2) to estimate the values
of the parameters of the CIR model (4) by EML.

Ornstein-Uhlenbeck model The OU process proposed by Vasicek (1977) evolves according to
the SDE

dX = α(β −X) dt + σ dW (7)
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where α (speed of adjustment), β (the mean interest rate) and σ (volatility control) are again the
parameters to be estimated. The OU process also exhibits mean reversion of X to the state X = β,
but unlike the CIR process, the domain of the state variable is unrestricted, that is, S = R.

The derivation of the transitional PDF of the OU process is similar to that of the CIR process and
is also presented in Appendix 2. The transitional PDF is the Normal distribution

f(x |Xk; θ) =
1√
2πV

exp
[
− (x− x̄)2

2V

]
(8)

where

V =
σ2(1− e−2α(tk+1−tk))

2α
, x̄ = β + (Xk − β) e−α(tk+1−tk) .

As for the CIR model, this transitional PDF may now be used in combination with expression (2) to
estimate the values of the parameters of the OU model (7) by EML.

Numerical integration In the simulation experiments conducted in Section 5 it is necessary to
generate data consistent with these benchmark models4. This is efficiently achieved using the Milstein
(1978) scheme

xj+1 = xj + µ(xj)∆ + g(xj) ε j +
g(xj)

2
∂ g(xj)

∂x

(
ε2

j −∆
)

(9)

where xj and xj+1 are consecutive realisations of X separated by an interval of duration ∆ and
εj ∼ N(0, ∆).

In general the Milstein scheme is superior to the Euler-Maruyama scheme in that it exhibits strong
convergence of order one by contrast with the order one half convergence of the Euler-Maruyama
scheme. However, both algorithms are equivalent when g is a constant function. In the context of
the CIR and OU processes, the particularised forms of Milstein’s scheme are respectively

(CIR) xj+1 = xj + α(β − xj)∆ + σ
√

xj ε j +
σ2

4
(
ε2

j −∆
)
,

(OU) xj+1 = xj + α(β − xj)∆ + σ ε j .

(10)

Having outlined the benchmark models, attention is now focussed on the details of the competing
estimation methods illustrated in Figure 1.

3 Likelihood-based procedures

The first group of estimators, highlighted on the left hand column of Figure 1, seek to retain the ML
framework by approximating the transitional PDF f(x |Xk; θ) by a numerical method, a discrete
approximation or a simulation procedure.

4The OU process has an exact solution that may be used to generate data. For consistency, however, a numerical

scheme is used in this paper
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3.1 Numerical solution of the Fokker-Planck equation

ML estimation relies crucially on the ability to compute the value of the transitional PDF, which is
known to satisfy the Fokker-Planck equation

∂f

∂t
=

∂

∂x

( 1
2

∂(g2(x;θ)f)
∂x

− µ(x; θ)f
)

(11)

for suitable initial condition and boundary conditions. Let the state space of the problem be S = [a, b]
and suppose that the process starts at Xk at time tk. The appropriate initial condition in this case is

f(x |Xk;θ) = δ(x−Xk) (12)

where δ denotes the Dirac delta function, and the boundary conditions required to conserve unit
density within this interval are the zero-flux conditions

lim
x→a+

(
µf − 1

2
∂(g2f)

∂x

)
= 0 , lim

x→b−

(
µf − 1

2
∂(g2f)

∂x

)
= 0 . (13)

When a closed-form solution to this initial boundary value problem, and hence a closed-form expres-
sion for the transitional PDF, is not available, an alternative is to solve the problem numerically. In
the context of financial econometrics, the possibility of ML estimation based on the numerical solu-
tion of the Fokker-Planck equation was first recognised by Lo (1988) and has since been implemented
by Hurn and Lindsay (1999) using spectral approximations and Jensen and Poulsen (2002) using the
method of finite differences. The finite-difference procedure is described and implemented here as it
is the more familiar technique.

The finite-difference procedure is based on a discretisation of state space into n uniform sub-intervals
of length ∆x = (b − a)/n and a discretisation of the time interval [tk, tk+1] into m uniform sub-
intervals of duration ∆t = (tk+1− tk)/m. Let the nodes of the finite-difference scheme be denoted by
xp = a+p∆x where p is an integer satisfying 0 ≤ p ≤ n, let (tk =)tk,0, tk,1 · · · , tk,m(= tk+1) denote the
subdivision of [tk, tk+1] into intervals of duration ∆t where tk,q = tk + q∆t, and let f

(q)
p = f(xp, tk,q)

be the value of the transitional PDF at xp at time tk,q. Integration of equation (11) over [tk,q, tk,q+1]
gives

f(x, tk,q+1)− f(x, tk,q) =
1
2

∂2

∂x2

(
g2(x)

∫ tk,q+1

tk,q

f(x, t) dt
)
− ∂

∂x

(
µ(x)

∫ tk,q+1

tk,q

f(x, t) dt
)

. (14)

Let the auxiliary variables

φp =
∫ tk,q+1

tk,q

f(xp , t) dt

be defined, then in the usual notation, equation (14) has finite difference approximation

f (q+1)
p − f (q)

p =
g2
p+1φp+1 − 2g2

p φp + g2
p−1φp−1

2(∆x)2
− µp+1φp+1 − µp−1φp−1

2∆x
.
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The terms in this equation are now regrouped to give

f (q+1)
p − f (q)

p =
(g2

p−1 + (∆x)µp−1

2(∆x)2

)
φp−1 −

g2
p

(∆x)2
φp +

(g2
p+1 − (∆x)µp+1

2(∆x)2

)
φp+1

and the trapezoidal quadrature used to approximate φp by the formula

φp =
∆t

2
(
f (q+1)

p + f (q)
p

)
+ O(∆t)3.

The final finite-difference representation of equation (11) now simplifies to give

−r
(
g2
p−1 + (∆x)µp−1

)
f

(q+1)
p−1 + 2

(
2 + rg2

p

)
f (q+1)

p − r
(
g2
p+1 − (∆x)µp+1

)
f

(q+1)
p+1

= r
(
g2
p−1 + (∆x)µp−1

)
f

(q)
p−1 + 2

(
2− rg2

p

)
f (q)

p + r
(
g2
p+1 − (∆x)µp+1

)
f

(q)
p+1

(15)

where r = ∆t/(∆x)2 is the Courant number. The procedure used to construct equation (15) is
essentially the Crank-Nicolson algorithm, which is well known to exhibit robust numerical properties,
for example, it is stable and numerically consistent. Expression (15) forms the core of the finite-
difference representation of equation (11). It suggests that the distribution of transitional density at
any time is computed by solving a tri-diagonal system of equations given an initial distribution of
transitional density and suitable boundary conditions.

As has already been remarked, the initial condition is a delta function and is therefore not repre-
sentable within the framework of the finite-difference method. Jensen and Poulsen (2002) suggest that
this difficulty can be circumvented by starting the finite-difference algorithm with a specification of
the distribution of transitional density at (tk +∆t) based on the assumption that the transitional den-
sity at this time may be approximated by the normal distribution with mean value Xk + µ(Xk;θ)∆t

and variance g2(Xk;θ)∆t. The main drawback of this approximation is that once ∆t is chosen and
the initial state is known, the diffusion occurring over the time interval ∆t from the true initial condi-
tion determines the size of the interval of state space over which the transitional PDF is significantly
different from zero. The resolution ∆x of state space must now be chosen to be sufficiently small so
as to guarantee that a reasonable number of nodes (say a dozen) lie within this interval of non-zero
transitional PDF. Moreover, once a suitable value of ∆x is chosen, this discretisation interval must
be applied to the entire state space. In practice, this requirement means that ∆x = O(

√
∆t).

A final crucial aspect of the finite-difference procedure is the incorporation of the boundary conditions
into the first and last equations in the system. Recall that the solution is sought in the finite interval
(x0, xn). For many SDEs of type (1), the sample space is the semi-infinite interval (0,∞) so that the
drift and diffusion specifications will often satisfy g(x0) = 0 and µ(x0) > 0. Under these conditions
the boundary condition at x = x0 is equivalent to the condition f(x0, t) = 0, that is, no density can
accumulate at the boundary x = x0. However, no equivalent simplification exists at the boundary
x = xn which must be chosen to be suitably large, but finite5. The derivation of the boundary
condition at x = xn is now described.

5In the applications here, the state xn is chosen to be the maximum of the sample plus the range of the sample.
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The backward-difference representation of the boundary condition (13) at x = xn is

1
2

(3 g2
nf

(q)
n − 4 g2

n−1 f
(q)
n−1 + g2

n−2 f
(q)
n−2

2∆x

)
− µnf (q)

n + O(∆x)2 = 0 . (16)

These terms are regrouped and the truncation error ignored to obtain
(
3g2

n − 4(∆x)µn

)
f (q)

n − 4g2
n−1f

(q)
n−1 + g2

n−2f
(q)
n−2 = 0 . (17)

This boundary condition is now used at (tk + q∆t) and (tk + (q + 1)∆t) to eliminate f
(q)
n and f

(q+1)
n

respectively from equation (15) evaluated at p = n− 1. The final result is

P f
(q+1)
n−2 − (

Q−R
)
f

(q+1)
n−1 = −P f

(q)
n−2 +

(
Q + R

)
f

(q)
n−1 (18)

where
P = g2

n−2

(
3(∆x)µn − 2g2

n

)− (∆x)µn−2

(
3g2

n − 4(∆x)µn

)
,

Q = g2
n−1

(
4 (∆x)µn − 2g2

n

)
, R =

4
r

(
3g2

n − 4(∆x)µn

)
.

When it is not possible to assume that f(x0, t) = 0, the lower boundary condition can be derived using
a similar procedure. The result is an identical expression to equation (18) but with the subscripts n,
n− 1 and n− 2 replaced by 0, 1 and 2 respectively, and the negative sign between the two terms in
P replaced by a positive sign.

Assuming that f(x0, t) = 0, the final specification of the numerical problem starts with equation

2
(
2 + rg 2

1

)
f

(q+1)
1 − r

(
g 2
2 − (∆x)µ2

)
f

(q+1)
2 = 2

(
2− rg 2

1

)
f

(q)
1 + r

(
g 2
2 − (∆x)µ2

)
f

(q)
2 , (19)

which is the particularisation of the general equation (15) at x1 taking account of the requirement
that f(x0, t) = 0. There now follow (n − 3) equations with general form (15) in which the index
p takes values from p = 2 to p = n − 2, followed finally by equation (18). Taken together, these
equations form a tri-diagonal system of linear equations to be solved for the transitional PDF at time
tk,q+1 given the PDF at tk,q. Note that the tri-diagonal system described by equations (15), (18) and
(19) is solved for the transitional PDF at the nodes x1, · · · , xn−1. Here the transitional PDF at x0 is
known a priori to be zero, while the transitional PDF at xn is obtained directly from relation (17).

There is an equivalent statement of this problem in terms of the transitional cumulative distribution
function (CDF), F (x, t) , which is defined in terms of the transitional PDF, f(x, t), by

F (x, t) =
∫ x

a
f(u, t) du . (20)

When expressed in terms of F (x, t), equation (11) takes the form

∂2F

∂x ∂t
=

∂

∂x

[ 1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x

]
(21)

which can be integrated with respect to x to give

∂F

∂t
=

[ 1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x

]
+ C(t) (22)
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where C(t) is an arbitrary function of integration. The boundary conditions for this equation require
that F (a, t) = 0 and F (b, t) = 1 which in turn require that C(t) = 0. Therefore F (x, t) satisfies the
partial differential equation

∂F

∂t
=

1
2

∂

∂x

(
g
∂F

∂x

)
− µ

∂F

∂x
(23)

with Dirichlet boundary conditions F (a, t) = 0 and F (b, t) = 1. The initial condition F (x, tk) for a
transition from (Xk, tk) is constructed from the definition (12) to obtain

F (x, tk) =




0 x < Xk ,

1/2 x = Xk ,

1 x > Xk .

(24)

One important advantage of this approach is that the delta function initial condition required in
the computation of transitional PDF is now replaced by a step function initial condition in the
computation of the transitional CDF. The latter has a precise numerical representation whereas the
delta function (12) must be approximated6.

It is clear that the estimation procedure based on the numerical solution of the Fokker-Planck equation
is closest in spirit to EML, and it is perhaps surprising, therefore, that it has not enjoyed much support
in the literature particularly given that modern numerical methods allow the transitional PDF to
be recovered to high accuracy. Although the construction of the tri-diagonal system of equations
appears to be algebraically complicated, the component parts of these equations are developed from
well-known central-difference formulae. Once constructed, the numerical scheme does not require that
any special constitutive assumptions be made about the nature of the drift and diffusion functions,
for example, that they are affine functions of state. In other words, the method is completely general
in that any SDE can be easily accommodated without further work. In conclusion it should be
noted that this approach requires a moderate level of computational effort to implement properly.
In the main, this stems from the delta function initial condition and the concomitant implications
for the resolution of the solution in state space. The numerical effort in this estimation algorithm is
consumed by the repeated solution of a large system of simultaneous equations, albeit a tri-diagonal
system of equations.

3.2 Discrete maximum likelihood

The central idea in the “discrete” maximum likelihood (DML) approach to parameter estimation is
the approximation of the transitional PDF by a closed-form expression involving the parameters of the
SDE. The traditional (and most direct) way to achieve this objective is to use the Euler-Maruyama
algorithm with one step of duration ∆ = (tk+1 − tk) to generate the approximate solution

X = Xk + µ(Xk; θ)∆ + g(Xk;θ) εk (25)
6Preliminary research indicates that formulating the problem in terms of the transitional CDF is a promising line

of enquiry.
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of equation (1) where εk ∼ N(0, ∆). The transitional PDF of X is therefore approximated by the
Normal PDF with mean value (Xk +µ(Xk; θ)∆) and variance g2(Xk;θ)∆. Thus the simplest version
of DML replaces the true transitional PDF f(Xk+1 |Xk; θ) (required by EML) in expression (2) by

1
g(Xk;θ)

√
2π∆

exp
[
−

(
Xk+1 −Xk − µ(Xk;θ)∆

)2

2g2(Xk; θ)∆

]
. (26)

However, the estimates of the parameters of the SDE obtained using this DML approach are inconsis-
tent for any fixed sampling interval because of the bias introduced by discretisation. Broze, Scaillet
and Zaköıan (1998) provide a detailed discussion of this bias. Although the DML estimator con-
verges to the EML estimator as the sampling interval approaches zero (Florens-Zmirou, 1989), this
asymptotic result may not be sufficiently accurate at the sampling frequencies for which economic
and financial data are usually available.

Note that for some common SDEs, including those governing the CIR and OU processes, this direct
implementation of the DML approach leads to a negative log-likelihood function which can be min-
imised without the need for a numerical optimisation routine. In other words, analytical expressions
can be obtained for the parameters of the SDE that minimise the negative log-likelihood function
based on simple DML. The relevant details are provided in Appendix 3 for the CIR and OU pro-
cesses. While at first sight this finessing of the traditional DML algorithm might seem to be nothing
more than an exercise in algebra, the traditional DML algorithm is intrinsic to various parameter
estimation procedures to be discussed in this paper, e.g. Indirect Estimation (IE). The ability to
“write down” optimal parameter estimates based on the traditional DML approach without the need
for numerical optimisation has a dramatic impact on the accuracy and numerical efficiency of these
estimation procedures.

A variety of more accurate discrete approximations to the transitional PDF of the SDE (1) have
been suggested, but only two of these will be outlined here. See Durham and Gallant (2002) for an
excellent summary of these approaches.

Milstein variant Elerian (1998) developed a more accurate implementation of DML based on the
integration of equation (1) using the Milstein algorithm with one step of duration ∆ = (tk+1 − tk).
The approximate solution of (1) generated in this way is

X = Xk + µ(Xk;θ)∆ + g(Xk; θ) εk +
g(Xk; θ)

2
dg(Xk; θ)

dx

(
ε2
k −∆

)
(27)

where εk ∼ N(0, ∆). This equation is now treated as a mapping defining the random variable X in
terms of the random variable Y = εk. When expressed in terms of the constants Ak, Bk and Ck

defined by

Ak =
∆
2

g(Xk; θ)g
′
(Xk;θ) , Bk =

1

∆ [ g′(Xk; θ) ]2
, Ck = Xk + µ(Xk; θ)∆−Ak

(
1 + Bk

)
,

11



the mapping embodied in the Milstein solution (27) takes the simplified form
( Y√

∆
+ sign(Ak)

√
Bk

)2
=

(X − Ck)
Ak

. (28)

The transitional PDF of X may be constructed from the mapping (28) by first noting that each value
of X arises from two values of Y , namely

Y1 = −
√

∆
[

sign(Ak)
√

Bk +
√

X − Ck

Ak

]
, Y2 = −

√
∆

[
sign(Ak)

√
Bk −

√
X − Ck

Ak

]
. (29)

The usual formula for the PDF, fX , of X in terms of the PDF, fY , of Y gives immediately

fX = fY1

∣∣∣dY1

dX

∣∣∣ + fY2

∣∣∣dY2

dX

∣∣∣ =
1
2

√
∆

Ak(X − Ck)
1√
2π∆

(
exp

[
− Y 2

1

2∆

]
+ exp

[
− Y 2

2

2∆

])
.

It is now straightforward algebra to replace Y1 and Y2 by formulae (29) to get

fX =
e−Bk/2

√
2πAk(X − Ck)

exp
[
−(X − Ck)

2Ak

]
cosh




√
Bk(X − Ck)

Ak


 . (30)

Elerian (1998) simply replaces the true transitional PDF f(Xk+1 |Xk;θ) (required by EML) in ex-
pression (2) with the transitional PDF given by expression (30).

It seems not to have been recognised in the existing literature that there may be a problem with
the Milstein variant of DML. The derivation of expression (30) requires that the argument of the
hyperbolic cosine be real valued. This in turn requires that Bk(Xk+1 − Ck)/Ak ≥ 0. There is,
however, no guarantee that this condition will hold because the observation Xk+1 may not arise from
a realisation of εk. For example, when the Milstein variant is applied to a transition from Xk of the
CIR process, the constants Ak, Bk and Ck become

Ak =
σ2∆

4
, Bk =

4Xk

σ2∆
, Ck = ∆

[
α(θ −Xk)− σ2

4

]
.

Since Ak and Bk are positive, the scheme experiences difficulties whenever Xk+1 < Ck, that is,
whenever two successive datums satisfy

Xk+1 < ∆
[
α(θ −Xk)− σ2

4

]
.

To overcome this problem, the density (30) can be replaced by the numerically robust expression

fX =
e−Bk/2

√
2π|Ak| |X − Ck|

exp
[
−|X − Ck|

2 |Ak|
]

cosh

(√
Bk |X − Ck|

|Ak|

)
(31)

which is identical to expression (30) whenever Ak(X−Ck) ≥ 0. Clearly this decision has repercussions
for the quality of the estimation procedure since any observation Xk+1 for which (Xk+1−Ck)/Ak < 0
will behave as though Ck +sign(Ak)|Xk+1−Ck| was observed and not Xk+1. Moreover, the frequency
with which this happens will change in an unpredictable way as the parameters θ are modified by
the optimisation procedure.
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Local linearisation Shoji and Ozaki (1998) develop another approximation which they call local
linearisation. Their approach requires a constant diffusion function. This objective can be achieved
in equation (1) by changing the state variable from X to Y where

Y =
∫ X du

g(u; θ)
. (32)

Ito’s lemma
dY =

(
µ(X; θ)

dy

dx
+

g2(X, θ)
2

d2y

dx2

)
dt + g(X; θ) dW

may now be used to show that Y (t) satisfies the stochastic differential equation

dY = µ̂(Y ; θ) dt + dW , µ̂(Y ; θ) =
µ(X;θ)
g(X;θ)

− 1
2

dg(X; θ)
dx

(33)

where it is assumed that occurrences of X in the definition of µ̂(Y ; θ) are replaced by a function of
Y via the mapping defined by equation (32). The Taylor series expansion of the drift function about
Yk is

µ̂(Y ; θ) = µ̂(Yk;θ) +
d µ̂(Yk; θ)

dY

(
Y − Yk

)
+

(
Y − Yk

)2

2
d2 µ̂(Yk;θ)

dY 2
+ O(Y − Yk)3 .

If Y is now taken to be the solution of equation (33), then (Y −Yk)2 = ∆+O(∆3/2) and (Y −Yk)3 =
O(∆3/2), and the expansion of µ̂(Y ; θ) about Yk to order ∆ now becomes

µ̂(Y ;θ) = µ̂(Yk; θ) + µ̂ ′(Yk; θ)
(
Y − Yk

)
+

∆
2

µ̂ ′′(Yk;θ) . (34)

With this approximation of the drift process, the random variable Y now satisfies the SDE

dY =
(

µ̂(Yk; θ) + µ̂ ′(Yk; θ)
(
Y − Yk

)
+

∆
2

µ̂ ′′(Yk; θ)
)

dt + dW , (35)

which conforms to an OU process with parameter specification

α = − µ̂ ′(Yk; θ) , β = Yk − 2 µ̂(Yk; θ) + ∆ µ̂ ′′(Yk;θ)
2 µ̂ ′(Yk;θ)

, σ = 1 . (36)

In conclusion, the transitional PDF of Y is approximated by the transitional PDF of the OU process
with parameters given by equations (36). The transitional PDF of X is now computed from that of
the OU process by the usual formula

fX = fY
dY

dX
=

fY

g(X;θ)

where fY is given by expression (8) with α, β and σ taking the values in equation (36).

In a comparative study of various DML approximation methods Durham and Gallant (2002) found
the local linearisation method to be among the most accurate of this class of estimators. They also
suggest that almost all of the methods perform more accurately if the SDE is converted to one with a
unit diffusion by the transformation in (32) even if their implementation does not necessarily require
it. This is most likely due to the fact that the transitional PDF of the new variable Y is closer to
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that of a Gaussian distribution than that of X. Note, however, that it must be possible to compute
µ̂(y; θ) in closed form to take advantage of this procedure. If the derivatives of µ̂(y; θ) are taken
numerically then it is likely that some of the advantage of this procedure will be sacrificed.

In conclusion, the major advantages of traditional DML are its ease of implementation, speed and the
fact that it does not impose any restrictions on the nature of the drift and diffusion functions of the
underlying SDE. These features have led to the popularity of DML both as an estimation procedure
in its own right and also as a component of more complex methods. Of course, the accuracy of the
traditional implementation of DML suffers from discretisation bias for the size of sampling interval
commonly encountered. The variants of DML try to reduce this bias, but at the expense of some of
the simplicity both in terms of coding and in terms of the need for computing gradients of the drift
and diffusion functions.

3.3 Hermite polynomial expansion approaches

Aı̈t-Sahalia (2002) develops two estimation procedures in which the unknown transitional PDF is
approximated by means of an expansion based on modified Hermite polynomials. The modified
Hermite polynomial of degree n, here denoted conveniently by Hn(z) but not to be confused with
the conventional Hermite polynomial, is defined by

Hn(z) = ez2/2 dn

dzn
(e−z2/2) n ≥ 0 (37)

and satisfies the important orthogonality property

∫ ∞

−∞
φ(z)Hn(z)Hm(z) dz =


 0 n 6= m

n! n = m
(38)

where φ(z) is the PDF of the standard normal distribution. This property of modified Hermite
polynomials can be established directly from the identity

∫ ∞

−∞
φ(z)Hn(z)Hm(z) dz =

∫ ∞

−∞

dn

dzn
(φ(z))Hm(z) dz = (−1)n

∫ ∞

−∞
φ(z)

dnHm(z)
dzm

dz (39)

which is constructed by applying integration by parts n times to the middle integral and differentiating
the modified Hermite polynomial on each occasion. Since Hm(z) is a polynomial of degree m, then
the right hand integral in equation (39) has value zero when m < n. Similarly, symmetry demands
that the value of this integral is also zero when m > n. Thus result (38) is established when n 6= m.
The result when n = m follows by first noting that dnHn(z)/dzn = n!, and then taking advantage of
the fact that φ(z) is a PDF.

Both of the estimation algorithms proposed by Aı̈t-Sahalia (2002) begin by transforming the variable
in the original SDE (1) from X to

Y =
∫ X du

g(u; θ)
. (40)
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The procedure is identical to that used by Shoji and Ozaki (1998) for the local linearisation algorithm
described in Subsection 3.2. Briefly, Ito’s lemma is used to show that Y satisfies the SDE

dY = µ̂(Y ; θ) dt + dW (41)

with drift specification

µ̂(Y ; θ) =
µ(X;θ)
g(X;θ)

− 1
2

∂g(X; θ)
∂X

(42)

where all occurrences of X on the right hand side of equation (42) are understood to be replaced
by a function of Y that is constructed by inverting the monotonically increasing mapping defined
by equation (40). This strategy serves two purposes; first it reduces the technical complexity of the
problem from two arbitrary functions in the original SDE written for X to a single arbitrary function
in the SDE written for Y , and second, the procedure provides a canonical form into which many SDE
can be reduced by an appropriate change of random variable.

Let Yk be the value of Y corresponding to Xk, and define the auxiliary random variable Z by

Z =
Y − Yk√

∆
(43)

where ∆ = (tk+1 − tk) is the interval between observations. When ∆ is small so that the current
distribution of Z is not close to its marginal distribution - the most common situation to occur
in practice - the transitional PDF of Z at tk+1, namely the solution f(Z |Yk; θ) to the Fokker-
Planck equation for Z, is intuitively well approximated by the normal distribution with mean value
µ̂(Yk; θ)

√
∆ and unit variance. This suggests that the transitional PDF of Z at tk+1 can be well

approximated by the Fourier-Hermite series expansion

f(z) = φ(z)
∞∑

n=0

ηnHn(z) . (44)

Finite Hermite expansion Aı̈t-Sahalia’s first procedure involves truncating the infinite sum in
equation (44) so as to approximate the transitional PDF of Z at tk+1 by the finite Hermite expansion

f(z |Yk;θ) = φ(z)
J∑

j=0

ηj(∆, Yk; θ)Hj(z) . (45)

The transitional PDF of X can be constructed from that of Z in the usual way to get

f(x |Xk; θ) =
f(z |Yk; θ)√
∆ g(X; θ)

, (46)

and so the efficacy of this estimation procedures depends on the ease with which the coefficients
η0(∆, Yk; θ), · · · , ηJ(∆, Yk; θ) can be calculated. By multiplying equation (45) by Hm(z) and in-
tegrating the result over R, it follows immediately from the orthogonality property (38) that the
coefficients of this expansion are

ηj(∆, Yk; θ)) =
1
j!

∫ ∞

−∞
Hj(z)f(z |Yk;θ) dz =

1
j!

E
[
Hj(Z) |Y (tk) = Yk;θ

]
. (47)
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Since H0(z) = 1 then η0(∆, Yk; θ)) = 1, which makes intuitive sense as the first term in the Hermite
expansion of the transitional PDF of Z must be the standard normal. The additional terms in the
expansion serve to refine this approximation, but unfortunately the coefficients of these additional
terms are more difficult to determine.

On the assumption that ηj(∆, Yk;θ) is K times continuously differentiable with respect to ∆ in a
neighbourhood of the origin, then ηj(∆, Yk; θ) has MacLaurin expansion

ηj(∆, Yk; θ) =
K∑

n=0

∆n

n!
dηn

j (0)
d∆n

+ O(∆K+1) . (48)

The infinitesimal operator7 of Z (which is identical to the infinitesimal operator of Y ) is defined by

Aθ(ψ) = µ̂(y;θ)
dψ

dy
+

1
2

d2ψ

dy2
(49)

and has the property that it expresses the time derivative of an expected value as an expected value
taken in state space. This property is now used to replace derivatives with respect to ∆ in equation
(48) with expectations taken in state space to obtain

ηj(∆, Yk; θ) =
1
j!

K∑

n=0

lim
∆→0+

E [An
θ [Hj(z) ] ]

∆n

n!
+ O(∆K+1) . (50)

Note that as ∆ → 0+, the transitional PDF approaches a delta function, and therefore the integral
defining the expectation in equation (50) may be replaced by An

θ [ Hj(z) ] evaluated at z = Zk, or
equivalently at y = Yk, to get

ηj(∆, Yk; θ) =
1
j!

K∑

n=0

lim
y→Yk

An
θ [ Hj(z) ]

∆n

n!
+ O(∆K+1) . (51)

This strategy is used to develop explicit expressions for the coefficients η1(∆, Yk; θ), . . . , ηJ(∆, Yk; θ)
which in turn allows the Fourier-Hermite expansion of the transitional PDF of X to be constructed
from identity (46). In practice, these coefficients are complicated expressions involving ∆, µ̂(Yk; θ)
and derivatives of µ̂(y; θ) evaluated at y = Yk. The technical details are unpleasant, and so only a
few steps in the calculations are given. For example, the components

Aθ[H1(z)] = − µ̂√
∆

, A2
θ[H1(z)] = −2µ̂µ̂

′
+ µ̂

′′

2
√

∆
,

A3
θ[H1(z)] = −4µ̂ 2µ̂

′′
+ 4µ̂(µ̂

′
) 2 + 4µ̂µ̂

′′′
+ 6µ̂

′
µ̂
′′

+ µ̂
′′′′

4
√

∆

are sufficient to compute η1(∆, Yk; θ) to o(∆3). Aı̈t-Sahalia (2002) uses this strategy to develop
7A general introduction to the infinitesimal operator is given in Appendix 4.
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explicit expressions for η1(∆, Yk; θ), · · · , η6(∆, Yk; θ) to o(∆3). The coefficients are

η0 = 1 ,

η1 = −µ̂∆1/2 − [
2µ̂µ̂

′
+ µ̂

′′ ]
∆3/2/4

−[
4µ̂(µ̂

′
) 2 + 4µ̂ 2µ̂

′′
+ 6µ̂

′
µ̂
′′

+ 4µ̂µ̂
′′′

+ µ̂
′′′′ ]

∆5/2/24

η2 =
[
µ̂ 2 + µ̂

′ ]
∆/2 +

[
6µ2µ

′
+ 4(µ

′
)2 + 7µ̂µ̂

′′
+ 2µ̂

′′′ ]
∆2/12

+
[
28µ̂ 2(µ̂

′
) 2 + 28µ̂ 2µ̂

′′′
+ 16(µ̂

′
) 3 + 16µ̂ 3µ̂

′′
+ 88µ̂µ̂

′
µ̂
′′

+21(µ̂
′′
)2 + 32µ̂

′
µ̂
′′′

+ 16µ̂µ̂
′′′′

+ 3µ̂
′′′′′ ]

∆3/96

η3 = −[
µ̂ 3 + 3µ̂µ̂

′
+ µ̂

′′ ]
∆3/2/6− [

12µ̂ 3µ̂
′
+ 28µ̂(µ̂

′
) 2

+22µ̂ 2µ̂
′′

+ 24µ̂
′
µ̂
′′

+ 14µ̂µ̂
′′′

+ 3µ̂
′′′′ ]

∆5/2/48

η4 =
[
µ̂ 4 + 6µ̂ 2µ̂

′
+ 3(µ̂

′
) 2 + 4µ̂µ̂

′′
+ µ̂

′′′ ]
∆2/24

+
[
20µ̂ 4µ̂

′
+ 50µ̂ 3µ̂

′′
+ 100µ̂ 2(µ̂

′
) 2 + 50µ̂ 2µ̂

′′′
+ 23µ̂µ̂

′′′′

+180µ̂µ̂
′
µ̂
′′

+ 40(µ̂
′
) 3 + 34(µ̂

′′
) 2 + 52µ

′
µ
′′′

+ 4µ
′′′′′ ]

∆3/240

η5 = −[
µ̂ 5 + 10µ̂ 3µ̂

′
+ 15µ̂(µ̂

′
) 2 + 10µ̂ 2µ̂

′′
+ 10µ̂

′
µ̂
′′

+ 5µ̂µ̂
′′′

+ µ̂ 4
]
∆5/2/120

η6 =
[
µ̂ 6 + 15µ̂ 4µ̂

′
+ 15(µ̂

′
) 3 + 20µ̂ 3µ̂

′′
+ 15µ̂

′
µ̂
′′′

+ 45µ̂ 2(µ̂
′
) 2

+10(µ̂
′′
) 2 + 15µ̂ 2µ̂

′′′
+ 60µ̂µ̂

′
µ̂
′′

+ 6µ̂µ̂
′′′′

+ µ̂
′′′′′ ]

∆3/720

(52)

It should be noted that in Aı̈t-Sahalia’s procedure the availability of a closed form expression for
µ̂(y; θ) appears to be a crucial prerequisite for the computation of the coefficients. However, if this
closed form expression is difficult (or impossible) to derive in practice, it is still possible to construct
the coefficients in equation (52) by noting that the values of µ̂(y; θ) and its derivatives at Yk can be
obtained directly from the gradient of the mapping function and the properties of the primitive drift
and diffusion functions8 without an explicit expression for X in terms of Y . For example, µ̂(Yk; θ)
can be obtained directly from equation (42) and its first derivative can be computed as

dµ̂

dy
=

∂µ̂

∂x

dx

dy
= g

∂µ̂

∂x
=

∂µ

∂x
− µ

g

∂g

∂x
− g

2
∂2g

∂x2
(53)

where µ = µ(x;θ) and g = g(x;θ) are the primitive expressions for drift and diffusion. Higher
derivatives of µ̂(y; θ) can be obtained by a similar procedure.

CIR process: Let X satisfy the CIR process with drift specification µ(x; θ) = α(β − x) and diffusion
specification g(x; θ) = σ

√
x, then the new random variable defined in equation (40) is Y = 2

√
X/σ

and the underlying SDE satisfied by Y becomes

dY = µ̂(Y ;θ) dt + dW , µ̂(y; θ) =
(2αβ

σ2
− 1

2

) 1
y
− α

2
y . (54)

Although µ̂(y;θ) is given by a simple closed-form expression in y which can be differentiated as
required, nevertheless the coefficients in expression (52) remain cumbersome.

8This fact has also been noted by Aı̈t-Sahalia in a companion working paper and by Bakshi and Ju (2005).
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OU process: The OU process with drift specification µ(x;θ) = α(β − x) and diffusion specification
g(x;θ) = σ is the more tractable of the two models used for illustrative purposes in this survey. In
this case Y = X/σ and the underlying SDE satisfied by Y becomes

dY = µ̂(Y ; θ) dt + dW , µ̂(y;θ) =
αβ

σ
− α y . (55)

The second derivative and all higher derivatives of µ̂(y;θ) are zero which in turn simplifies consider-
ably the coefficients of the finite Fourier-Hermite expansion of the transitional PDF of Z.

The accuracy of the Hermite polynomial procedure is controlled by the choice of the order of the
modified Hermite expansion and the order of the Maclaurin series used for the expansion in ∆. As
equations (52) make clear, one obvious disadvantage of this approach lies in the inherent complexity of
the expressions for the Fourier-Hermite coefficients. From equations (52) it is clear that ηj(∆, Yk; θ) =
O(∆j/2) and therefore the extension of this procedure to a higher degree of temporal accuracy would
inevitably entail significantly more calculation, both in terms of the number of coefficients and the
degree of accuracy required from each coefficient. Aı̈t-Sahalia (2002) suggests that a Maclaurin series
of accuracy o(∆3) and a Hermite expansion of order one or two is sufficient to achieve the required
degree of precision in most applications. This situation can be expected to occur whenever the
transitional PDF remains well approximated by a Gaussian PDF after diffusion has taken place over
an interval of duration ∆. One final drawback of this approach is that the Hermite polynomials have
infinite domain and consequently there is nothing in this method to force the transitional PDF of a
process with semi-infinite domain (such as the CIR process) to be zero at the origin. Therefore, this
procedure may leak density at the origin when estimating the transitional PDF of processes with
semi-infinite domain.

Infinite Hermite expansion Aı̈t-Sahalia’s second procedure involves rewriting equation (44) as

f(y, t) =
1√
2πt

exp
(
− (y − Yk)2

2t

)
exp

( ∫ y

Yk

µ̂(u)du
)
ψ(y, t). (56)

The right hand side of equation (56) is the product of the standard normal PDF for the variable Z

(φ(z) in equation (44)) expressed in terms of Y , and two further terms which will assume the role
of the infinite Hermite sum in equation (44). The objective of this second procedure is to express
the function ψ(y, t) as a convergent power series in ∆ in which the coefficients of the series capture
the contribution made by the entire family of Hermite polynomials at each order in ∆. By contrast,
the coefficients η0, η1, · · · in the infinite Hermite sum in equation (44) capture the total contribution
from a single Hermite polynomial to the sum. The transitional PDF of X can be constructed from
that of Y in the usual way to get

f(x |Xk; θ) =
f(y |Yk; θ)

g(X;θ)
. (57)

The analysis begins by rewriting the Fokker-Planck equation for the unit diffusion (41) as

1
f

∂f

∂t
=

1
2f

∂2f

∂y2
− µ̂

f

∂f

∂y
− ∂µ̂

∂y
. (58)
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It is a straight forward calculation to show that the solution of equation (58) may be represented by
expression (56) provided ψ(y, t) satisfies

∂ψ

∂t
=

1
2

∂2ψ

∂y2
− y − Yk

t

∂ψ

∂y
+ λψ , λ = −1

2

(
µ̂2 +

∂µ̂

∂y

)
. (59)

A solution to equation (59) in the form of a power series expansion in time is now sought in the form

ψ =
∞∑

n=0

cn(y) tn

n!
(60)

in which the functions c0(y), c1(y), · · · are determined by matching the coefficients of powers of t.
This representation of ψ, when substituted into equation (59), leads to the identity

∞∑

n=1

cn(y) tn−1

(n− 1)!
=

1
2

∞∑

n=0

d2cn(y)
dy2

tn

n!
− y − Yk

t

∞∑

n=0

dcn(y)
dy

tn

n!
+

∞∑

n=0

λ(y)cn(y)tn

n!
(61)

Some of the summations in equation (61) are re-indexed and the terms rearranged to give

∞∑

n=0

tn

n!

[
cn+1(y) +

(y − Yk)
n + 1

dcn+1(y)
dy

−
(1

2
d2cn(y)

dy2
+ λ(y)cn(y)

)]
= −y − Yk

t

dc0(y)
dy

(62)

from which it follows immediately that

dc0(y)
dy

= 0 ,

cn+1(y) +
(y − Yk)
(n + 1)

dcn+1(y)
dy

=
1
2

d2cn(y)
dy2

+ λ(y)cn(y) .

(63)

The first condition asserts that c0(y) is a constant function. In order to maintain the correct short
time asymptotic expression for the transitional PDF of the process, this constant function must be
taken to be c0(y) = 1. Furthermore, the requirement that ψ(y, t) be finite at y = Yk for all t > 0
forces the solution of the second condition to be

cn+1(y) =
n + 1

(y − Yk)n+1

∫ y

Yk

(u− Yk)n
(1

2
d2cn(u)

du2
+ λ(u)cn(u)

)
du n ≥ 0. (64)

In conclusion, equation (64) in combination with c0(y) = 1 enables the coefficients c0(y), c1(y), · · ·
to be determined recursively. With the aid of numerical packages such as Mathematica or Maple the
integral in equation (64) can be computed analytically and the process can proceed without error.
However, if the solution to equation (64) is to be found by numerical means then this approach
may be problematic since numerical error occurring in the computation of cn(y) generates further
numerical error in the computation of cn+1(y), that is, the system of equations may quickly become
unstable. This appears to occur in the case of the CIR process with the onset of the instability being
further hastened by the presence of the singularity in the modified drift specification µ̂.
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3.4 Simulated maximum likelihood

The method of “simulated” maximum likelihood (SML) is developed independently9 in Pedersen
(1995) and Brandt and Santa-Clara (2002) with an alternative algorithm given in Hurn, Lindsay and
Martin (2003). In each of the methods to be described, SML aims to obtain an estimate of f(x |Xk; θ)
by simulation. A common feature in all the SML approaches is the use of a numerical scheme to
advance the solution of the SDE from tk to tk+1 in m small steps of duration ∆t = (tk+1− tk)/m. Let
(Xk =)x∗k,0, x∗k,1, . . . , x

∗
k,m denote the sequence of states accessed by the solution in this integration

procedure at the respective times (tk =)tk,0, tk,1, . . . , tk,m(= tk+1) where tk,q = tk + q∆t and q takes
all integer values between q = 0 and q = m. Each sequence of states from (Xk, tk) to a final state
(X, tk+1) is called a “path”. Figure 2 illustrates a typical path starting at (Xk, tk) and passing
through the unobserved states (x∗k,1, tk,1), (x∗k,2, tk,2), . . . , (x∗k,m−1, tk,m−1). The final state is either
enforced to be (Xk+1, tk+1) or is left unrestricted, denoted (X, tk+1). As the relationship between
state and time is clear from Figure 2, for ease of notation, time will be suppressed in the subsequent
discussion of SML.

xXk = x∗k,0

o
x∗k,1

o
x∗k,2

o
x∗k,3

o
x∗k,m−1

x Xk+1

tk = tk,0 tk,1 tk,2 tk,3 tk,m−1 tk,m = tk+1

Figure 2: A simulation path connecting the observed states Xk and
Xk+1 (denoted by X) via (m−1) unobserved states x∗k,1, x

∗
k,2, · · ·x∗k,m−1

at the respective times tk,1, tk,2, · · · , tk,m−1 (denoted by O).

Kernel estimate of transitional PDF The kernel estimation of the transitional PDF developed
by Hurn et al. (2003) is the most direct implementation of SML. For ease of explanation it is expedient
to start with this approach. A numerical scheme (for example Euler-Mayumara or Milstein) is used to
simulate M paths of the SDE starting from Xk with the final state unrestricted. Each simulated value
of the terminal state represents an independent draw from the transitional PDF. These simulated
values can therefore be used to construct a nonparametric kernel density estimate of the value of the
transitional density at Xk+1, namely,

f(Xk+1 |Xk; θ) =
1

Mh

M∑

i=1

K
(Xk+1 −X

(i)
k+1

h

)
(65)

9Although the paper by Pedersen appears to predate that by Brandt and Santa-Clara, the latter is essentially a

revised version of the ideas developed in Santa-Clara (1995).
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where K is a kernel function, X
(i)
k+1 is the i-th simulated value of X at time tk+1 and h is the kernel

bandwidth10. Underlying this method is the idea that the solution of the Fokker-Planck equation at
tk+1 is the limiting density that would be achieved by an infinite number of simulations of the SDE
starting from Xk.

Despite its intuitive appeal, this direct approach suffers from all the problems associated with estimat-
ing a density function from a finite data set. Most important of these are the problems of bandwidth
selection and leakage of density into state space not accessible to the process. Although substantial
progress on these problems has been made in the context of kernel methods for density estimation,
all the proposed improvements add to what is already a computationally expensive procedure.

Monte Carlo simulation of transitional PDF Pedersen’s (1995) method is similar to the kernel
procedure just described but differs crucially from it in the respect that the transitional PDF is not
estimated by a kernel procedure. Each simulated path of the SDE now terminates at the penultimate
step, namely at tk,m−1. The last transition required to advance the process to Xk+1, is over a small
interval ∆t and is therefore well approximated11 by the Gaussian PDF with mean value and variance
determined by the penultimate state x∗k,m−1. The value of the transitional PDF to be used in the
computation of likelihood, therefore, is the average value of the M estimates of the likelihood of the
transition to Xk+1 from the penultimate state of the simulated paths. A desirable consequence of
this procedure is that a nonparametric estimate of the transitional PDF is no longer required.

Importance sampling approach The Pedersen (1995) approach can be nested within a family of
importance sampling estimators of transitional density (Elerian, Chib and Shephard, 2001). For the
purpose of explanation, it is convenient to simplify notation further and let x∗ = (xk,1, · · · , xk,m−1)
denote the vector of unobserved states as the stochastic process X evolves from the state Xk to the
state Xk+1. The value of the transitional PDF at Xk+1 satisfies the identity

f(Xk+1 |Xk;θ) =
∫

f(Xk+1,x∗ |Xk;θ) dx∗ (66)

where f(Xk+1,x∗ |Xk) is the joint probability density of the final state Xk+1 and all possible un-
observed paths for the stochastic process evolving from Xk in accordance with the SDE (1). The
identity (66) suggests that f(Xk+1 |Xk; θ) may be estimated by a Monte Carlo integration in which
paths x∗ are chosen and the value of f(Xk+1 |Xk; θ) computed and then averaged over the paths to
get an estimate of the transitional PDF.

The central idea of importance sampling is to weight the selection of paths in favour of those that are
thought to make the most significant contribution to the value of the integral on the right hand side
of equation (66) whilst simultaneously correcting for the distortion introduced by the new probability

10Hurn et al. (2003) use a Gaussian kernel with a bandwidth given by the normal reference rule (see Scott, 1992).
11Recall that this approximation was also used by Jensen and Poulsen (2002) to initialise the transitional PDF in

the finite-difference algorithm.
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measure. Let ψ(x∗ |Xk+1, Xk;θ) denote the PDF resulting from a user-supplied selection criterion for
possible paths terminating at Xk+1. The identity (66) may now be rewritten in equivalent algebraic
form

f(Xk+1 |Xk; θ) =
∫

f(Xk+1,x∗ |Xk; θ)
ψ(x∗ |Xk+1, Xk; θ)

ψ(x∗ |Xk+1, Xk; θ) dx∗ . (67)

Equation (67) now asserts that the transitional PDF f(Xk+1|Xk;θ) may be regarded as the expected
value of the ratio f(Xk+1,x∗ |Xk; θ)/ψ(x∗ |Xk+1, Xk, θ) when calculated over all paths generated
using the importance sampling procedure. Once again the integral (67) is estimated by Monte Carlo
integration. Specifically, if M paths are drawn using the importance sampler, then the transitional
PDF is taken to be the mean value of the ratio f(Xk+1,x∗ |Xk;θ)/ψ(x∗ |Xk+1, Xk,θ).

Intuitively, the numerator of this ratio is calculated for the path in accordance with the process
underlying the SDE whereas the denominator is calculated for the same path but now for the pro-
cess underlying the importance sampler. In practice, the numerator is computed as the product of
likelihoods of the transitions from x∗k,q to x∗k,q+1 for q = 0 . . . m− 1, that is

f(Xk+1,x∗ |Xk; θ) =
m−1∏

q=0

f(x∗k,q+1 |x∗k,q)

where it is understood that Xk = x∗k,0 and Xk+1 = x∗k,m. In this computation f(x∗k,q+1 |x∗k,q) is
approximated by the traditional DML likelihood (see Subsection 3.2).

The denominator of the ratio is computed as the likelihood of the path as measured by its generating
process. Of course, the form of the likelihood depends on the specification of the importance sampler.
For example, the algorithm used by Pedersen (1995) may be regarded as the special case in which
the importance sampler is the same scheme as that used to approximate the SDE. In this case, the
likelihood of the path under both the SDE and the generating process are identical, so the ratio in
equation (67) consequently collapses to f(Xk+1 |x∗k,m−1; θ).

In general, a more judicious choice for ψ can improve the efficacy of the estimation procedure.
Specifically, it is beneficial to generate paths which make use of the known terminal state Xk+1 of the
path. The modified Brownian bridge proposed by Durham and Gallant (2002) is one such procedure.
They suggest that the unobserved datums x∗ can be generated in sequence starting with x∗k,1 and
ending with x∗k,m−1. They propose that the unobserved datum x∗k,q should be generated from x∗k,q−1

and Xk+1 by making a draw from a normal distribution with mean and variance given respectively
by

(m− q)x∗k,q−1 + Xk+1

(m− q + 1)
, g2(x∗k,q−1)

(m− q)∆t

(m− q + 1)
. (68)

The motivation for the choice of the parameters in equation (68) starts with the identity

p(x∗k,q |x∗k,q−1, Xk+1) =
p(x∗k,q |x∗k,q−1) p(Xk+1 |x∗k,q)

p(Xk+1 |x∗k,q−1)
(69)

in which p(x∗k,q |x∗k,q−1, Xk+1) is the conditional distribution of x∗k,q given the current unobserved
state x∗k,q−1 and the next observed state, namely Xk+1. Each PDF on the right hand side of equation
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(69) is approximated by a Normal PDF. The selections

p(x∗k,q |x∗k,q−1) ∼ N
(
x∗k,q−1 + µ(x∗k,q−1)∆t , g2(x∗k,q−1)∆t

)
,

p(Xk+1 |x∗k,q−1) ∼ N
(
x∗k,q−1 + µ(x∗k,q−1)(m− q + 1)∆t , g2(x∗k,q−1)(m− q + 1)∆t

) (70)

take their mean and variance from the usual Euler-Maruyama approximation of the solution to the
SDE over the appropriate time intervals. The same logic would dictate that

p(Xk+1 |x∗k,q) ∼ N
(
x∗k,q + µ(x∗k,q)(m− q)∆t , g2(x∗k,q)(m− q)∆t

)
.

However the values of µ(x∗k,q) and g2(x∗k,q) are unknown, and so to resolve this impasse, Durham
and Gallant (2002) approximate these unknown values by µ(x∗k,q−1) and g2(x∗k,q−1) respectively.
Consequently, the construction of p(x∗k,q |x∗k,q−1, Xk+1) is based on the assumption that

p(Xk+1 |x∗k,q) ∼ N
(
x∗k,q + µ(x∗k,q−1)(m− q)∆t , g2(x∗k,q−1)(m− q)∆t

)
. (71)

The Normal PDFs underlying each of the distributions in equations (70) and (71) are introduced into
the conditional probability density defined in equation (69) and after some straightforward algebra,
is becomes clear that

p(x∗k,q |x∗k,q−1, Xk+1) ∼ N

(
(m− q)x∗k,q−1 + Xk+1

(m− q + 1)
, g2(x∗k,q−1)

(m− q)∆t

(m− q + 1)

)
. (72)

The expression for E [x∗k,q ] proposed in equation (68) corresponds exactly to that which would be
constructed by linear interpolation, through time, of the current state x∗k,q−1 and the final state
Xk+1 and conforms with the intuitive idea that the generation procedure must progressively focus
the unobserved path towards the next observed state. Although less obvious, the expression for the
variance proposed in equation (68) likewise corresponds exactly to that which would be constructed
by linear interpolation, through time, of the variance g2(x∗k,q−1) at the current state x∗k,q−1 and the
variance (zero) at the final state Xk+1.

Elerian et al. (2001) propose drawing the unobserved states from a multivariate normal distribution
with mean values chosen to maximise the likelihood of a transition from Xk to Xk+1 under the Euler
discretisation and covariance matrix given by the inverse of the negative Hessian evaluated at the
mean. The calculation of the mean of this distribution generally requires the use of a numerical
optimisation routine. This technique will be described in more detail in the Markov Chain Monte
Carlo approach in Subsection 3.5.

Each method discussed in this subsection requires the simulation of the SDE, but differs in how
the information in the paths is used to construct the estimate of the transitional PDF and thus
the simulated likelihood function. Although the direct method proposed by Hurn et al. (2003) has
intuitive appeal and is easy to implement, the need to use kernel estimates of the transitional PDF
compromises its accuracy. Durham and Gallant (2002) describe a comparative study of the perfor-
mance of the Pedersen (1995), the modified Brownian bridge process and the procedure suggested
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by Elerian et al. (2001). They conclude that the importance sampler approach using the modified
Brownian bridge outperforms the others. One final comment concerns the major drawback of SML.
If this method is to provide comparable accuracy to the other methods surveyed here, it is bound to
be computationally very expensive.

3.5 Markov Chain Monte Carlo

Bayesian analysis of discretely observed SDEs has been studied independently by Elerian, Chib
and Shephard (2001), Eraker (2001), Roberts and Stramer (2001) and Jones (1998). The Bayesian
approach to estimating the parameters of SDEs involves iteration of the following two steps.

1. Data augmentation Each transition in the data, say from tk to tk+1, is divided into m uniform
intervals of size ∆t and the observed data is augmented by introducing (m − 1) unobserved
datums at the intermediate times tk,1, . . . , tk,m−1. In total, N(m − 1) unobserved datums are
constructed giving an augmented sample containing mN + 1 data points.

2. Drawing parameters The likelihood of the augmented sample under traditional DML is
treated as the joint distribution of the parameters θ of the SDE from which a new set of
parameters are drawn.

The iterations of these two steps are assumed to converge in the sense that, after a burn-in period,
the likelihood function generated by the augmented sample will be insensitive to any particular
augmented data set and therefore each draw of parameters is now a draw from their true marginal
distribution. The estimate of each parameter is then obtained as the sample mean of these repeated
draws from the marginal distribution. Each step is now described in more detail following Elerian et
al. (2001).

Data augmentation Suppose that a parameter vector θ and an augmented sample are available,
then the first task is to update the values for the unobserved data using the Metropolis-Hastings
algorithm. Elerian et al. (2001) recommend updating the unobserved data between two observations
in random sized blocks, where the number of unobserved datums in the block, say B, is drawn from a
Poisson distribution with appropriately chosen mean. It is convenient to maintain the notation used
in Figure 2 in which the typical path starts at Xk, passes through the unobserved states x∗ before
being forced to the final state Xk+1. For ease of notation let Xk = x∗k,0 and Xk+1 = x∗k,m.

Let x∗k,i, . . . , x
∗
k,i+B−1 be a typical block with lefthand neighbour x∗k,i−1 and righthand neighbour

x∗k,i+B. Note that blocks must contain at least one unobserved datum to be updated and cannot
straddle the observed data points. Elerian et al. (2001) suggest drawing possible new values for the
unobserved block from a multivariate normal distribution12. They provide analytical expressions for
the components of a Newton-Raphson iterative procedure that can be used to find the mean and

12Chib and Shephard (2001) suggest that it may be possible to use the modified Brownian bridge proposed by Durham
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covariance matrix of this multivariate normal. The mean maximises the log-likelihood of going from
x∗k,i−1 to x∗k,i+B under the Euler discretisation, and the covariance matrix is given by the inverse of
the negative Hessian evaluated at the mean. Note that, in practice, there is no guarantee that the
negative Hessian matrix will be positive definite at the computed maximum. To fix this problem, a
generalised Choleski decomposition is used in which the negative Hessian is factored as LDLT , where
L is a lower triangle matrix and D is a diagonal matrix. By replacing each nonzero entry of D by its
absolute value, the negative Hessian is forced to be positive definite.

Once the proposed replacement block x∗pk,i, . . . , x
∗p
k,i+B−1 is generated, the next step is to decide

whether or not to replace the current block with this new block. The Metropolis-Hastings algo-
rithm states that the current block should be replaced with probability

P = min

[
f(x∗pk,i, . . . , x

∗p
k,i+B−1 |x∗t,i−1, x

∗
t,i+B; θ)ψ(x∗k,i, . . . , x

∗
k,i+B−1 |x∗t,i−1, x

∗
t,i+B;θ)

f(x∗k,i, . . . , x
∗
k,i+B−1 |x∗t,i−1, x

∗
t,i+B; θ)ψ(x∗pk,i, . . . , x

∗p
k,i+B−1 |x∗t,i−1, x

∗
t,i+B;θ)

, 1

]
(73)

where

f(x∗k,i, . . . , x
∗
k,i+B−1 |x∗t,i−1, x

∗
t,i+B; θ) ∝

i+B−1∏

q=i−1

N(x∗t,q + µ(x∗t,q)∆t, g2(x∗t,q)∆t)

provides an estimate of the likelihood of the process arising from the Euler discretisation, and
ψ(x∗pk,i, . . . , x

∗p
k,i+B−1 |x∗t,i−1, x

∗
t,i+B; θ) provides the same estimate for the proposal generating density,

in this case the multivariate normal as described previously.

Drawing parameters The next stage in the MCMC procedure involves drawing a new set of
parameters, conditioned on the augmented sample. In the absence of an informed prior, the likelihood
of the augmented sample

f(X∗, X|θ) =
N−1∏

k=0

( m−1∏

q=0

f(x∗k,q+1 |x∗k,q;θ)
)

(74)

is treated as a PDF from which the next set of parameters θ are to be drawn. For simple models,
including SDEs commonly encountered in the finance literature, drawing new parameters can be
straightforward. For more complex models, however, it may be difficult to draw from the marginal
distribution of the parameters. In these cases it is necessary to use an accept-reject strategy to draw
parameters from the marginal distribution (see Chib and Greenberg, 1995).

One important class of SDE, which occurs frequently in finance, divides the parameters θ into two
disjoint sets, namely, parameters θµ which control the drift function and a single volatility control
parameter, say σ which scales the diffusion. In such models, the volatility control parameter con-
ditioned on θµ, is inverse-Gamma distributed (Zellner, 1971). Moreover, if the drift specification is
itself a linear function of the parameters θµ, then the parameters of the drift function are multivari-
ate student-t distributed. The CIR and OU processes only fall into this category if the definition of

and Gallant (2002), introduced in Section 3.4, as an alternative method for data augmentation. In our experience, this

approach proved less satisfactory.

25



the drift function is modified to µ(x) = κ − αx, where κ = βα. A procedure for drawing from the
marginal distributions of the parameters for these processes is outlined in Appendix 5.

Initialisation The MCMC approach to estimating the parameters of SDEs is initialised by selecting
starting values for the parameter vector θ and constructing unobserved states by linear interpolation
between the observed states. After the burn-in period, the effect of the initial conditions has decayed
to the point beyond which the likelihood is insensitive to any particular realisation of the augmented
sample.

To conclude, by its very nature the MCMC method is computationally intensive. Not only do the
augmented samples have to be generated by simulation, many samples are required to construct the
distribution of the estimates of the model parameters. Furthermore, the generation of unobserved
states can be problematic and requires intervention by the user. A further drawback is that the pa-
rameter drawing procedure is problem specific, that is, the marginal distributions for the parameters
are known in close form only for a few common SDEs. Despite these drawbacks, MCMC shows good
accuracy and extends naturally to multivariate models, including those with latent factors.

4 Sample DNA matching

The second broad class of estimators, highlighted in the right-hand column of Figure 1, estimate
parameters by aligning user-defined features of the model with those of the data. The most obvious
features of the data to match are the moments although there are a variety of features that are
proposed by estimators in this class. For this reason, the rather eclectic title of “sample DNA
matching” has been chosen for this group of estimators.

4.1 General method of moments

The general method of moments (GMM) developed by Hansen (1982) has been applied to the es-
timation of the parameters of SDEs. The crux of this method is the specification of a number
of moment conditions13 ψ1(X; θ), . . . , ψK (X; θ), so that at the true parameter values, θtrue, each
moment condition satisfies

E
[
ψj(Xk;θtrue)

]
= 0 j = 1, . . . , K. (75)

Let Ψ(X;θ) be the K ×N matrix of sample values of the functions evaluated at θ

Ψ(X; θ) =




ψ1(X1; θ) . . . ψ1(XN ; θ)
...

. . .
...

ψK (X1;θ) . . . ψK (XN , θ)


 (76)

13In order to identify the parameters, the number of moment conditions must be at least as large as the number of

parameters to be estimated.
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The GMM estimate of the parameter vector θ̂ is obtained by minimising the objective function

J(θ) = E [Ψ(X; θ)]TΩ E [Ψ(X; θ)] (77)

where Ω is a (K ×K) positive definite weighting matrix yet to be determined. Note that E[Ψ(X; θ)]
is a (K × 1) vector containing the expected value of the rows in Ψ(X; θ), that is, the vector contains
the sample analogues of the moment conditions (75) for the current estimate of the parameter vector.

Hansen (1982) shows that the optimal weighting matrix has the form

Ω =
[

1
N

Ψ(X; θtrue)Ψ(X; θtrue)T
]−1

(78)

which is guaranteed to be positive definite but is an infeasible choice in practice as θtrue is unknown.
Hansen, Heaton and Yaron (1996) outline a variety of algorithms for constructing the weighting
matrix. An iterative procedure is adopted here. An initial estimate of the parameters is obtained
by minimising the objective function (77) with the identity matrix as the weighting matrix. These
consistent estimates of the parameters are then used to construct a new weighting matrix and the
objective function is minimised with this parameter-dependent weighting matrix until convergence.

As already noted, the central element of GMM is the specification of the moment conditions. In
the estimation of the parameters of SDEs, moment conditions have been obtained by a number of
different routes. Chan, Karolyi, Longstaff, and Sanders (1992) derive a set of approximate moment
conditions from a first order Euler-Maruyama discretisation of the SDE. As noted in Subsection
3.2, this discretisation implies that Xk+1 ∼ N(Xk + µ(Xk; θ)∆ , g2(Xk; θ)∆). Accordingly, the two
moment conditions

ψ1(X;θ) : E
[
Xk+1 −Xk −∆µ(Xk; θ)

]
= 0 ,

ψ2(X;θ) : E
[
(Xk+1 −Xk −∆µ(Xk; θ))2 −∆g2(Xk;θ)

]
= 0

(79)

follow directly from the Euler-Maruyama discretisation of the SDE. These primitive moment condi-
tions may be used to generate any number of further conditions using the generating relationships

ψ2j+1(X; θ) = ψ1(X; θ)Xj ψ2j+2(X; θ) = ψ2(X; θ)Xj j = 1, 2 . . . .

For example, the next pair of moment conditions are

ψ3(X; θ) : E
[ (

Xk+1 −Xk −∆µ(Xk; θ)
)
Xk

]
= 0 ,

ψ4(X; θ) : E
[ (

(Xk+1 −Xk −∆µ(Xk; θ))2 −∆g2(Xk;θ)
)
Xk

]
= 0 .

(80)

Another way to generate moment conditions for estimating the parameters of SDEs is suggested by
Hansen and Scheinkman (1995) who advocate the use of the infinitesimal generator to characterise
continuous-time Markov processes. This approach is not discussed here, mainly because it is difficult
to provide moment conditions to estimate the parameters of the diffusion function by this route.
Moment conditions have also been generated using simulated moments, which are calculated as
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expected values of moments across a large number of simulations of the stochastic process. This
approach, referred to as the simulated method of moments (SMM), was developed by Duffie and
Singleton (1993) and is similar in spirit to indirect estimation, which is discussed in detail in the
following subsection.

Like DML, the major advantages of GMM are its ease of implementation, speed and the fact that
it does not impose any restrictions on the nature of the drift and diffusion functions of the SDE.
Similarly, its accuracy is hindered by discretisation bias at least for the method outlined here where
discrete moments conditions are used.

4.2 Indirect estimation

The class of indirect estimators developed in Gourieroux, Monfort and Renault (1993) and Gallant
and Tauchen (1996) are offshoots of SMM. In this approach, parameters of the SDE are not estimated
directly from the (usually intractable) likelihood denoted in equation (2), but indirectly through
another model. The efficacy of the indirect estimation technique therefore depends critically on
finding an auxiliary model which is easy to estimate by ML, but which also provides a suitable
approximation to the true likelihood function.

As usual, let θ denote the parameter vector of the SDE to be fitted to the sample data. Now define an
auxiliary model with independent parameters ξ which can be estimated easily by ML. The objective
of the indirect estimation algorithm is to extract information about θ indirectly through the ML
estimates of ξ. The crux of the procedure is to recognise that the auxiliary model is misspecified,
and, therefore, the ML estimates of ξ, say ξ∗, are linked to the true parameters of the SDE by the
so-called binding function

ξ∗ = φ(θtrue) ,

where the dimension of ξ must be at least that of θ for identification purposes. If the dimensions of
θ and ξ are identical then the binding function is invertible and θ can be estimated indirectly by

θtrue = φ−1(ξ) .

In practice, the binding function may be recovered by simulation. Observations are simulated from
the SDE for given θ, say θ̃, and then used to find the corresponding estimate for ξ, say ξ̃. In effect,
a realisation of the binding function has been constructed.

In general terms the indirect estimation procedure proceeds as follows. Auxiliary parameters are
obtained from the auxiliary model by minimising its negative log-likelihood to obtain

ξ∗ = Argmin
ξ

(
−

N−1∑

k=0

log f (aux)(Xk+1 |Xk; ξ)
)

(81)

where f (aux)(Xk+1 |Xk; ξ) is the transitional PDF of the auxiliary model. As already noted, it is
essential that these ML estimates are easy to compute. For a given θ, the SDE is simulated to obtain
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M samples X
(1)
t (θ), . . . X

(M)
t (θ). There are now two ways to use the information provided by these

simulations in order to extract the form of the binding function.

The procedure proposed by Gourieroux et al. (1993) (GMR) proceeds as follows. For each simulated
data set, the auxiliary model is re-estimated to provide M estimates ξ̃

(1)
(θ), ξ̃

(2)
(θ), · · · ξ̃(M)

(θ) of the
parameters of the auxiliary model. The Gourieroux et al. (1993) indirect estimator θ̂GMR is defined
by

θ̂GMR = Argmin
θ

(
ξ∗ − 1

M

M∑

i=1

ξ̃
(i)

(θ)
)T

Ω
(
ξ∗ − 1

M

M∑

i=1

ξ̃
(i)

(θ)
)

(82)

where Ω is a positive-definite weighting matrix.

Gallant and Tauchen (1996) (GT) suggest another indirect estimator, commonly known as the efficient
method of moments (EMM). Let G be the matrix of scores of the auxiliary model where the k-th
column of G is the vector

∂ log f (aux)(Xk+1|Xk; ξ∗)
∂ξ

.

With this notation in place, the EMM estimator, θ̂GT, is defined by

θ̂GT = Argmin
θ

( 1
M

M∑

i=1

E [G̃(i)(θ)]
)T

Ω
( 1

M

M∑

i=1

E [G̃(i)(θ)]
)

, (83)

where E [G̃(i)(θ)] is a vector with the same dimension as ξ containing the expected value of the rows
of G̃(i). Essentially G̃(i) is the analogue of G constructed from the i-th simulated sample instead of
the observed data.

In both these estimators, the positive-definite weighting matrix Ω may be set equal to the inverse of
the outer product estimate of the Hessian matrix of the auxiliary log-likelihood function. Specifically,
the weighting matrix has the following form

Ω =
[

1
N

GGT

]−1

.

Note that for the models used in this paper, analytical expressions for the Hessian are available.

For the CIR and OU processes, the natural choice of auxiliary model is the Euler-Maruyama discreti-
sations of the SDE, namely

(CIR) Xk+1 −Xk = α∗(θ∗ −Xk) + σ∗
√

Xk εk ,

(OU) Xk+1 −Xk = α∗(θ∗ −Xk) + σ∗ εk ,

(84)

with εk ∼ IIN (0, 1). The analytical solutions to the ML problem for the parameters of these models
is given in Appendix 3.

The GMR approach needs M estimations of the auxiliary model (one for each simulated sample)
for each value of θ in the minimisation procedure required by equation (82). Of course, this is not
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an arduous requirement if estimation of the auxiliary model is easy, that is, closed form solutions
are available for estimating ξ. In general, however, the EMM variant of indirect estimation is to be
preferred because, being a simulation method, the core procedure is already computationally quite
expensive even without the added burden of repeated optimisation. The fundamental performance
issue in either approach depends critically on the auxiliary model. If a natural auxiliary model
is available then indirect estimation works well even in relatively small samples. When no natural
auxiliary model is available, for example, as occurs in the CIR process with the levels effect parameter
not constrained to be 1/2, the performance deteriorates significantly (see Hurn et al., 2003).

4.3 Characteristic function approaches

Singleton (2001), Jiang and Knight (2002), and Chacko and Viciera (2003) have revisited the idea of
utilising the Fokker-Planck equation in a procedure to estimate the parameters of SDEs. However,
rather than solving for the transitional PDF they solve for the characteristic function of X defined
by

f̃(p, t) =
∫

S
e−px f(x, t) dx (85)

where f(x, t) ≡ f( (x, t) | (X0, t0); θ) is the transitional PDF of X and p is a parameter which is
restricted to those regions of the complex plane for which the convergence of the integral defining
f̃(p, t) is assured. If S = R, as occurs in the case of the OU process, then p = iω where ω is real-
valued, i2 = −1 and the characteristic function is the familiar Fourier transform of the transitional
PDF. On the other hand, if S = R+ (or any semi-infinite interval) as happens in the case of the CIR
process, then p is a complex number that is typically restricted to the half-plane Re(p) > b, where b is
defined by the requirement that | f(x, t) | < Mebx for all x > 0, and the characteristic function is now
the Laplace transform of the transitional PDF. Once the characteristic function has been obtained,
it is possible to use the inverse transform to obtain the unknown transitional PDF.

When the characteristic function, f̃(ω, t), is the Fourier transform (as is the case for the OU process),
the transitional PDF is recovered from

f(x, t) =
1
2π

∫ ∞

−∞
f̃(ω, t) eiωx dω (86)

by numerical integration. The procedure is not straightforward since the kernel of the integrand is
oscillatory to mention but one of the difficulties. The usual way to estimate f(x, t) is by means of
Filon’s method. On the other hand, when the characteristic function is the Laplace transform (as is
the case for the CIR process), the transitional PDF can be obtained by means of Mellin’s formula

f(x, t) =
1

2πi

∫ c+i∞

c−i∞
f̃(p, t) ep x dp , c > b . (87)

When it becomes necessary to evaluate f(x, t) by Mellin’s formula, the procedure will usually involve
the method of Residue Calculus often in the presence of a slit plane to accommodate the fact that
the integrand is not single valued.
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For the affine14 class of SDEs, it is possible to obtain the characteristic function in closed form as
an exponential of an affine function (see Duffie and Kan, 1996). Although the affine class contains a
number of popular SDEs in finance (including the CIR and OU processes) it is a rather limited subset
of the SDEs of interest. For non-affine SDEs the characteristic function must be approximated. A
more promising offshoot of this literature, therefore, has been the development of a procedure to
estimate the parameters of SDEs in a method of moments framework that does not require the use
of the inverse transform. It is for this reason that the characteristic function method appears in the
sample DNA matching section and not the section dealing with likelihood-based methods. There are
two ways to generate moments.

Spectral moments The central idea here is that the expected value of the characteristic function
at time tk+1 is known. If the characteristic function is a Laplace transform then

E [ f̃(p, tk+1) ] =
∫ ∞

0
e−pxf(x, tk+1) dx =

∫ ∞

0
e−px δ(x−Xk+1) dx = e−pXk+1 (88)

whereas if the characteristic function is a Fourier transform then

E [ f̃(ω, tk+1) ] =
∫ ∞

−∞
e−iωxf(x, tk+1) dx =

∫ ∞

−∞
e−iωx δ(x−Xk+1) dx = e−iωXk+1 . (89)

Moment conditions can therefore be obtained by matching the expected value of the characteristic
function with e−pXk+1 as in equation (88) at various (arbitrary) choices of p for the Laplace transform,
and by matching the real and imaginary parts of the expected value of the characteristic function
with the real and imaginary parts of e−iωXk+1 as in equation (89) at various (arbitrary) choices of ω

for the Fourier transform. Further moment conditions can be generated by taking products of these
primitive moment conditions with powers of Xk.

Temporal moments The j-th moment of the Laplace and Fourier characteristic functions can be
expressed respectively as

(Laplace) (−1)j dj f̃(p, tk+1)
dpj

∣∣∣
p=0

=
∫ ∞

0
xjf(x, tk+1) dx

(Fourier) ij
dj f̃(ω, tk+1)

dωj

∣∣∣
ω=0

=
∫ ∞

−∞
xjf(x, tk+1) dx .

(90)

For example, taking j = 1 and j = 2 for the Laplace transform gives the moment conditions

E
[
(−1)

df̃(p, tk+1)
dp

∣∣∣
p=0

−Xk+1

]
= 0 E

[
(−1)2

d2f̃(p, tk+1)
dp2

∣∣∣
p=0

−X2
k+1

]
= 0 (91)

respectively, provided that these derivatives can be evaluated analytically.

The characteristic function procedure implemented in the Monte Carlo experiments of Section 5 is
based on spectral moment conditions. The derivation of the transitional PDFs of the CIR and OU
processes in Appendix 2 relies crucially on their characteristic functions, given in equations (134) and
(139) respectively. These results are now used to establish the following moment conditions.

14Affine SDEs have drift and diffusion functions that are linear in the state variable X.
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CIR process The primitive moment condition for the CIR process is

E
[
c ν+1 e−u (p + c)−ν−1 exp

[ cu

p + c

]
− exp [−pXk+1]

]
= 0 (92)

where c, v, u and ν are as defined in the discussion following equation (134). Each choice of p

provides only one moment condition, as this condition is real valued. Further moment conditions can
be obtained by taking products of the primitive moment condition with powers of Xk.

OU process The primitive moment condition used in the estimation of the parameters of the OU
SDE is given by

E
[

exp
[
− iω

(
Xk + (β −Xk)(1− e−α∆

)− ω2σ2

4α

(
1− e−2α∆

)] − exp [−iωXk+1]
]

= 0 (93)

where ∆ = tk+1− tk. In theory an infinite number of moment conditions are available by (arbitrary)
choice of values for ω. Note also, that each choice of ω provides two moment conditions as the real
and complex parts of the two components of expression (93) are matched separately. Further moment
conditions can also be generated by multiplying the primitive moment condition with powers of Xk.

Once the moment conditions have been chosen, either by choice of p or ω, or by choice of j (if
temporal moments are used), parameter estimation then proceeds in an identical way to GMM. Note
that when using the spectral moment approach, some care is needed in the choice for the values of
p or ω at which the moment conditions are generated. Injudicious choices can can lead to matrices
that are poorly conditioned and therefore difficult to invert when it becomes necessary to construct
the weighting matrix in the GMM procedure (Singleton, 2001).

Although this method of estimating the parameters of SDEs is analytically appealing, it does suffer
from the major drawback that its applicability is largely limited to the class of SDEs with affine drift
and diffusion functions. This is because it is possible to generate exact closed-form expressions for the
characteristic function for this class of model. If the drift and diffusion functions are not intrinsically
linear functions of state, then they must be approximated by linear functions.

4.4 Estimating function approaches

Like the characteristic function approach to estimating the parameters of SDEs, the estimating
function method could easily be classified as a likelihood-based procedure. Ultimately the decision to
classify it as a DNA matching method is driven by the recognition that, at its heart, the estimating
function approach comprises a set of conditions that may be regarded as moments and implemented
within the GMM framework.

Kessler and Sørensen (1999) recognise that moment conditions may be obtained from the eigenfunc-
tions of the infinitesimal generator of the process. It is demonstrated in Appendix 4 that

dE [ φ ]
dt

= E [Aθφ ] (94)
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where φ(x) is a suitably differentiable function of state and Aθ is the usual infinitesimal operator.
Suppose now that φ is an eigenfunction of the infinitesimal operator Aθ with eigenvalue λ, then

Aθ φ = λφ . (95)

In this instance equation (94) becomes

dE [ φ ]
dt

= λE [ φ ] (96)

with solution
E [ φ ](tk+1) = eλ(tk+1−tk) φ(Xk) . (97)

Given J eigenfunctions φ1, . . . , φJ with associated distinct eigenvalues λ1, . . . , λJ , moment conditions
may be generated from the primitive moment generating expression

E
[
φj(X)− eλj(tk+1−tk) φj(Xk)

]
=

[
φj(Xk+1)− eλj(tk+1−tk) φj(Xk)

]
= 0. (98)

Before demonstrating how these moment conditions are used in an estimating function approach, it
is necessary to outline the basic ideas behind the general estimating function method.

An estimating function is defined to be a function of the model parameters with the property that
the optimal parameters are returned when this function takes the value zero. The most familiar
estimating function is the score function, the zeros of which are the ML estimates of the model
parameters. For estimating the parameters of SDEs, however, the likelihood function is generally
intractable and the score function is not available.

Bibby and Sørensen (1995) consider the score function arising from DML, but correct for the discreti-
sation bias by subtracting a compensator that depends on the conditional moments of the process.
The resulting estimating function is

GBS =
N−1∑

k=0

[
Xk+1 − E [Xk+1 |Xk; θ ]

]

V (Xk; θ)
∂E [Xk+1 |Xk;θ ]

∂θ
(99)

where, as usual, θ is the parameter vector, E [Xk+1 |Xk; θ ] is the conditional mean of the process and
V (Xk; θ) = E

[(
Xk+1 − E [Xk+1 |Xk;θ ]

)2 |Xk;θ
]

is its conditional variance. Bibby and Sørensen
(1995) show that the resulting parameter estimates are asymptotically consistent (but not unbiased)
and are normally distributed. Of course, one drawback of this approach is that analytical expressions
for the conditional moments are not usually known. Bibby and Sørensen (1995) suggest that these
moments can be well approximated by simulation, but this is a time consuming process, particularly
when calculating partial derivatives with respect to the parameters θ.

Kessler and Sørensen (1999) have further developed the procedure of Bibby and Sørensen by recognis-
ing that equation (95) can be reformulated as a Stürm-Liouville eigenvalue problem. Stürm-Liouville
theory asserts that continuous functions ψ(x) lying within the function space defined by the Stürm
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operator can be approximated to arbitrary accuracy by linear combination of the eigenfunctions of
Aθ, that is,

ψ(x) ≈
J∑

j=1

ajφj(x)

The estimating function method then naturally leads to the conclusion that the eigenfunctions of
the infinitesimal generator may be used as a basis for approximating the scores. For a particular
transition, let Si be the i-th component of the vector of scores, that is

Si =
∂ log f(x, tk+1 |Xk; θ)

∂θi
.

The approximation is achieved on a transition-by-transition basis, with the optimal coefficients for a
particular transition being obtained by minimising

Φ(i)
k =

∫ (
Si −

J∑

j=1

a
(i)
j

[
φj(x)− eλj(tk+1−tk) φj(Xk)

])2
f(x, tk+1 |Xk; θ) dx (100)

with respect to the coefficients a
(i)
j . The function Φ(i)

k may be interpreted as the expected value of
the squared difference between the score for parameter θi and the estimating function. The optimal
values of a

(i)
j are obtained by setting to zero the partial derivative of Φ(i)

k with respect to a
(i)
j for each

integer j = 1, 2, · · · , J . This procedure leads to the first-order conditions

∫ J∑

p=1

a(i)
p

[
φp(x)− eλp(tk+1−tk) φp(Xk)

] [
φj(x)− eλj(tk+1−tk) φj(Xk)

]
f(x, tk+1 |Xk;θ) dx

=
∫

∂f(x, tk+1 |Xk; θ)
∂θi

[
φj(x)− eλj(tk+1−tk) φj(Xk)

]
dx

(101)

which has matrix representation A(i) a(i) = b(i) where

A
(i)
pj =

∫ [
φp(x)− eλp(tk+1−tk) φp(Xk)

] [
φj(x)− eλj(tk+1−tk) φj(Xk)

]
f(x, tk+1 |Xk; θ) dx ,

b
(i)
j =

∫
∂f(x, tk+1 |Xk; θ)

∂θi

[
φj(x)− eλj(tk+1−tk) φj(Xk)

]
dx .

(102)
By observing that

bj +
∫

∂

∂θi

[
φj(x)− eλj(tk+1−tk) φj(Xk)

]
f(x, tk+1 |Xk; θ) dx

=
∂

∂θi

∫ [
φj(x)− eλj(tk+1−tk) φj(Xk)

]
f(x, tk+1 |Xk; θ) dx

=
∂

∂θi

(
E [ φj ](tk+1)− eλj(tk+1−tk) φj(Xk)

)
= 0 ,

it follows that bj can be further simplified to

bj = −
∫

∂

∂θi

[
φj(x)− eλj(tk+1−tk) φj(Xk)

]
f(x, tk+1 |Xk;θ) dx. (103)
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Solution of this linear system for each transition yields the optimal coefficient values â
(i)
j (Xk). Once

these optimal coefficients have been obtained, Kessler and Sørensen (1999) construct the approxima-
tion to the score as

G
(i)
KS =

N−1∑

k=0

J∑

j=1

â
(i)
j (Xk)

[
φj(Xk+1)− eλj(tk+1−tk) φj(Xk)

]
. (104)

The estimates of the model parameters θ are now found by solving simultaneously the equations
G

(i)
KS = 0 for each value of i. This is done using a Newton-Raphson scheme with a Jacobian matrix

calculated by numerical differentiation. In order for this scheme to converge, it is imperative that
the initial values for the parameters are reasonably accurate. In practice this would mean that the
parameters of the SDE would first be estimated by (for example) traditional DML in order to obtain
a good starting estimate for the optimal value of θ.

With regard to the practical implementation of the estimating function method, significant simplifi-
cations are possible when the eigenfunctions φj(x) (j ≥ 1) are polynomials of degree j, that is,

φj(x) =
j∑

p=0

c(j)
p (θ)xp (105)

where c
(j)
p (θ) are known coefficients. Some common SDEs fall into this category including those

describing the CIR and OU processes. When the eigenfunctions are polynomials, the computation
of expressions (102) and (103) is equivalent to computing the moments

∫
xpf(x, tk+1 |Xk;θ) dx for

1 ≤ p ≤ 2J . Kessler and Sørensen (1999) show that these moments can be computed from expression
(97) by constructing and then solving the system of linear equations

eλj(tk+1−tk)φj(Xk) =
j∑

p=0

c(j)
p

∫
xpf(x, tk+1 |Xk; θ) dx j = 1, . . . , 2J . (106)

Alternatively, if a closed form expression for the characteristic function exists, the moments can be
obtained by the procedure described in equations (90). If the eigenfunctions are not polynomials the
evaluation of the integrals in (102) and (103) usually requires the process to be simulated, which is
again a time consuming exercise.

CIR and OU processes Appendix 6 demonstrates that the eigenfunctions for the CIR process
are generalised Laguerre polynomials with argument 2α x/σ2 and for the OU process are Hermite
polynomials with argument

√
α(x−β)/σ. The coefficients c

(j)
p of the generalised Laguerre polynomials

may be determined by setting c
(j)
0 = 1 and then using the iterative scheme

c
(j)
p+1 =

2α(j − p)
σ2(p + 1)(p + 1 + ν)

c(j)
p , ν =

2αβ

σ2
− 1 , (107)
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to determine the remaining coefficients. It can be shown that the first and second eigenfunctions for
the CIR and OU processes are respectively

(CIR) φ1(x) =
2
√

α(β − x)
σ

, φ2(x) =
4α(β − x)2

σ2
− 2 ,

(OU) φ1(x) = 1 +
2αx

βσ2
, φ2(x) = 1 +

αx

βσ2
+

4α3x2

σ4(σ2 + 2αβ)
.

Two other types of estimating functions have been introduced in the literature. Sørensen (2000) con-
siders prediction based estimating functions which involve approximating conditional moments with
expressions based on unconditional moments. By contrast, Kessler (2000) suggests that the moment
conditions derived in Hansen and Schienkman (1995) (see Section 4.1) can be used to construct the
simple estimating function

GK(θ) =
N−1∑

k=0

Aθφ(xk) (108)

for a suitable choice of test functions φ. Parameter estimates are obtained by solving for the values
of θ that set each equation in the system of equations (108) to zero. However, this approach is not
particularly useful in practice. For example, in the cases of the CIR and OU processes, irrespective
of the choices of φ it will not be possible to identify both the α and σ parameters simultaneously.

The EF approach is a complex procedure and to be viable it requires that closed-form expressions
be available for the eigenfunctions. In practice this means that the associated Stürm-Lioville eigen-
value problem must have a known closed-form expression for the solution. For this solution to be a
polynomial, as in the CIR and OU processes, the drift and diffusion functions of the SDE will most
likely need to be polynomials and, in particular, affine functions of state. If the eigenfunctions are
not polynomials the complexity of this method is likely to be severe and will involve simulation. It
is clear, therefore, that this method is particularly problem specific.

4.5 Matching marginal density

Aı̈t-Sahalia (1996b) develops an approach to estimating θ based on matching the marginal density
of the SDE with a kernel density estimate of the marginal density constructed from the data. Under
this approach the optimal parameters are given by

θ̂ = Argmin
θ

1
N

N−1∑

k=0

(
π(Xk;θ)− π̂0(Xk)

)2 (109)

where π(x; θ) is the marginal density of the SDE and π̂0(x) is the kernel density estimated from the
data.

The major disadvantage of this approach is that time-series data tends to be highly correlated whereas
the kernel procedure presupposes that the data are independent and identically distributed observa-
tions of the process. For example, Pritsker (1998) demonstrates that the informational content of the
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sample for which Aı̈t-Sahalia (1996b) proposed this approach is small, and therefore a kernel estimate
of the marginal density is likely to be inaccurate. This estimation approach is not pursued further in
the light of this recognition. Similarly, another approach suggested by Aı̈t-Sahalia (1996a), based on
the transitional PDF, also requires a kernel estimate of the marginal density and is not discussed.

5 Simulation experiments

In this section the estimators discussed previously are used to estimate the parameters of the CIR and
OU SDEs. In comparing the different algorithms particular attention will be given to the following
criteria.

1. Implementation This refers to the ease with the estimation procedure can be used in practice.
This includes whether or not the procedure requires specific forms for the drift and diffusion
functions to be implemented easily.

2. Accuracy The accuracy of the method is judged by comparing the parameter estimates with
the known values used in the simulations and with reference to EML, the benchmark method.

3. Speed There are large variations in the time required to estimate parameters by the various
methods. The speed will be judged in terms of the the average time taken to obtain estimates
in repeated experiments.

Of course, it is not possible to provide a totally objective comparison. Two specific cases spring to
mind. In the first instance, it is difficult to choose models that are neutral to all the procedures.
For example, the two SDEs chosen as the benchmark models involve linear specifications of the drift
and diffusion, which in turn favour methods that can take advantage of this property (the MCMC,
characteristic function and estimating function methods) relative to more generic methods (such as
the finite-difference procedure). The second case in point is the natural conflict between accuracy
and speed that characterises many of these methods, a trade-off that is influenced by a range of
subjective decisions made by the researcher. For example, the choice of the level of discretisation
of the state space and time in the finite-difference approach, the number of moments in a GMM
approach, the number of simulation paths in a simulation method, the number of eigenfunctions used
in an estimating function method to name but a few. As a guiding principle, these subjective choices
over the operating regimen of the estimating procedure were made with the overarching objective of
achieving reasonable accuracy in a sensible timeframe.

5.1 Experimental design

The estimation algorithms are compared by generating 2000 samples of 500 observations from the
CIR model

dX = α(β −X) dt + σ
√

X dW
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with true parameters α = 0.20, β = 0.08 and σ = 0.10, and from the OU process

dX = α(β −X) dt + σ dW

with α = 0.20, β = 0.08 and σ = 0.03. The synthetic samples are generated using the Milstein
scheme with each time interval between observations ∆ = 1/12 (representing monthly data) broken
into 1000 steps to ensure that the observed data are accurate realisations of the process. The esti-
mation procedures used in the comparison and the choices made in their implementation are now
summarised15.

1. Likelihood-based procedures

(a) EML The benchmark method, EML, involves no subjective decisions.

(b) PDE The method of finite differences requires the specification of the units of discreti-
sation of state space (∆x = 0.001) and time (∆t = 1/120). This is a somewhat coarse
discretisation of time but it is sufficient to obtain reasonable accuracy for the processes
being considered. The discretisation of state space needs to be fine enough that the initial
density for each transition is adequately resolved. The initial density used here is the Nor-
mal approximation suggested by Jensen and Poulsen (2002) which becomes more diffuse
as ∆t increases. Therefore, the relatively course discretisation of time permits a similarly
coarse discretisation of state space.

(c) DML Both traditional DML, based on the Euler discretisation, and the local linearisation
approach (DML-SO) of Shoji and Ozaki (1998) are employed. In order to use the local
linearisation method for the CIR process, the SDE is first converted to a unit diffusion by
the transformation in equation (32).

(d) SML Three SML procedures are used

• SML-KD The kernel density approach of Hurn et al. (2003) is implemented with
time discretisation ∆t = 1/120. The kernel density approach generally requires a
large number of simulations to deliver satisfactory accuracy and therefore M = 200
simulated paths are used.

• SML-IS-EUL The importance sampling approach of Elerian et al. (2001) is imple-
mented with sub-transition densities obtained from the Euler scheme, time discretisa-
tion ∆t = 1/120 and M = 100 simulation paths. The simulated time paths between
observations are generated from the modified Brownian bridge developed by Durham
and Gallant (2002).

• SML-IS-SO The importance sampling approach of Elerian et al. (2001) is imple-
mented with identical specification to SML-IS-EUL but with sub-transition densities
obtained by local linearisation.

15The notation used in each case should be interpreted in the context of the subsection in which the details of the

procedure is discussed.
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(e) HPE Two HPE procedures are used

• FHPE In the finite HPE approach proposed by Aı̈t-Sahalia (2002), seven polyno-
mial terms are included in the Hermite expansion so that all the expressions for the
coefficients of the expansion derived by Aı̈t-Sahalia are used.

• IHPE In the infinite HPE approach proposed by Aı̈t-Sahalia (2002), contributing
terms up to order three in ∆ are included in the power series expansion.

(f) MCMC The MCMC approach involves setting the unit of temporal discretisation (∆t =
1/60) and deciding on the number of iterations of the procedure to be done. Here 2500
parameter draws are made and the first 500 are discarded when calculating the final
parameter estimates. Simulated realisations of the process are generated from the Elerian
et al. (2001) proposal density.

2. Sample DNA matching procedures

(a) GMM GMM is implemented using the discrete moments proposed by Chan et al. (1992)
described in equations (79) and (80).

(b) CF Spectral moment conditions are generated from equations (93) and (92) by choosing
two arbitrary frequencies (p = 1, 5 or ω = 1, 5). The first moment of the basic conditions
is also used, to give a total of four conditions for the CIR process and eight conditions for
the OU process. The OU process has twice as many conditions because at any frequency
two conditions arise from matching the real and complex components, whereas for the CIR
process there are only real components to match.

(c) IE In the class of indirect estimators, the efficient method of moments (EMM) is chosen as
the variant to implement. It requires the selection of a discretisation of time (∆t = 1/120)
and the number of simulation paths (M = 100). Note that closed-form expressions given
in Appendix 3 are used to compute the local scores.

(d) EF The final estimator used is the eigenfunction approximation to the score suggested
by Kessler and Sørensen (1999). Two eigenfunctions, polynomials of degree one and two,
are used in the EF approach. DML estimates are used to initialise the Newton-Raphson
scheme.

5.2 Estimation results

The results of the comparative study are reported in Tables 1 and 2. The bias and root mean square
error (RMSE) of the estimates of the parameters of the CIR and OU processes over 2000 samples
are presented together with the average computational time per parameter estimation. To avoid
problems of ensuring similar levels of numerical efficiency across different methods16 all the computer

16Computational comparisons in programs such as Gauss, Matlab and Ox may be distorted by differing levels of

vectorisation.
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code to implement the various methods were written in C and compiled with the Intel C++ Compiler,
version 9.0. The simulation experiments were all run on a Pentium(R)4 2.80GHz desktop computer
with 0.5Gb of RAM. Prior to discussing these results reported in Tables 1 and 2 in detail, some
general comments on the first criterion for comparison, namely ease of implementation, are given.

Implementation The difficulties in implementation may be classified as conceptual and/or tech-
nical. EML, conventional DML and GMM are relatively straightforward to implement. DML with
local linearisation, PDE, all the SML methods and IE are moderately difficult to implement. In
our experience the most difficult algorithms to implement are MCMC, CF and EF and attention is
focused on these methods in the following discussion.

To take MCMC first, the most important drawback is its problem-specific nature, particularly in
regard to parameter drawings. When the model is linear, the drawing procedure is tractable, but
when the problem is nonlinear, the parameters may need to be drawn from an incomplete density or
the procedure may need to use an accept-reject strategy. For example, the drift specification α(β−x)
cannot be estimated because the likelihood function is incomplete. Instead the drift is rewritten as
κ−αx where κ = αβ and so β is calculated indirectly. A second difficulty with MCMC relates to the
drawing of the unobserved states between observations by means of a high-dimensional optimisation.
In any application of this method there is a significant probability that at some stage in drawing the
unobserved states, the negative Hessian at the chosen parameter values will not be positive-definite.
There is a practical fix to remedy this difficulty but it is one further level of complexity to be overcome
in implementing the procedure successfully.

The CF approach suffers from the need to specify a characteristic function which in practice means
that the drift and diffusion functions have to be linear functions of state. Both the CIR and OU
processes satisfy this condition but other specifications will require the drift and diffusion functions
to be approximated by linear specifications. The CF procedure will then need to be implemented
on these approximate forms. Furthermore, the choice of frequency on which to base the spectral
moments may be critical to the accuracy of the procedure.

The EF approach is a complex procedure and is only viable for the processes discussed here for
two reasons. First, the eigenfunctions for these models are well-known polynomials which allow the
optimal coefficients of the expansion of the score function to be computed from the moments of the
process. Second, because the processes are linear, the characteristic function exists and the moments
can be computed directly.

From the perspective of implementation, the HPE methods are curious; they are either very simple
or very difficult. The FHPE procedure is straightforward to implement provided that the coefficients
supplied by Aı̈t-Sahalia (2002) are sufficient to generate the required accuracy. Note that this result
extends to situations in which a simple closed-form expression for the drift of the unit diffusion is
not readily available. In this case, the chain rule for differentiation can be used to derive all the
components required to compute the coefficients. The real difficulty arises when the level of temporal
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accuracy supplied by Aı̈t-Sahalia’s specification is inadequate. In these situations it will be necessary
to extend the Hermite expansion which will require not only the computation of additional coefficients,
but also the re-computation of all existing coefficients to higher accuracy. These calculations can,
however, often be assisted by numerical packages such as Mathematica or Maple. The computation
of the coefficients of the power series expansion in the IHPE procedure is likely to be so complex as
to be infeasible without the assistance of programs such as these.

Accuracy In terms of the accuracy of the parameter estimation, all the methods perform ade-
quately, in the sense that the parameter estimates recovered are comparable with the accuracy of
EML. The speed of adjustment parameter, α, is by far the most difficult parameter to estimate. By
comparison, the long-term mean, β, and the volatility control parameter, σ, are easier to estimate
and are determined more accurately.

In terms of bias, traditional DML, GMM based on the discretised moments of Chan et al. (1992)
and the CF approach are the most interesting methods. The average estimates of α delivered by
traditional DML are less biased than those provided by other procedures. This is, however, most
likely due to a beneficial incidence of the (usually problematic) discretisation bias that afflicts this
procedure. The local linearisation based DML approach (DML-SO) returns parameter values that
are more in line with the majority of the other procedures. Of course, its good performance when
applied to the OU process is unsurprising as it is essentially equivalent to EML in this (isolated)
instance. The GMM and CF approaches return the results that are most distinct from the other
procedures. In particular, they struggle to resolve the β parameter for the CIR process and provide
mixed results for the α parameter of both processes.

In terms of RMSE, the poor performance of the GMM and CF approaches with regards to the β

parameter of the CIR process is reflected in the large RMSE associated with these estimates. The
kernel density based SML procedure (SML-KD) also returns larger RMSEs than most of the other
procedures, particularly in the case of the CIR process. This reflects the difficulty in obtaining
accurate kernel estimates of density from relatively few independent drawings. The relatively poorer
performance in the CIR case may stem from the fact that density can be leaked into negative state
space, a problem which cannot occur in the OU process.

Of course, if EML is to be regarded as a benchmark method, an interesting aspect of the performance
of the estimators is their ability to deliver the EML estimates, in each and every repetition of the
experiment and not merely on average. This aspect of the performance of the estimators is not
apparent from Tables 1 and 2. A measure of this ability is obtained by examining the difference
between the various estimates and the EML estimates. Tables 3 and 4 show the mean and standard
deviations of these differences taken over the 2000 repetitions. From these results it is clear that the
HPE, EF, PDE and SML-IS methods provide similar parameter estimates to EML in each and every
sample.
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Speed The clear losers in terms of speed are the two variants of the SML procedure (SML-IS-EUL
and SML-IS-SO). The reason for this is to be found in the computation of the modified Brownian
bridge suggested by Durham and Gallant (2002). This involves repeated computation of exponents
which is well-known to be numerically intensive. The PDE, MCMC, SML-KD and EMM methods
rate next in terms of speed. For the finite-difference procedure, time is spent solving a tri-diagonal
system of equations a large number of times. In the case of MCMC, the time is spent in the simulation
of the unobserved datums. Although the simulation paths in the case of the SML-KD approach are
easy to generate, large numbers of paths are required to resolve adequately the kernel estimate of
density. Although it remains moderately intensive, EMM runs surprisingly quickly for a simulation
based procedure. This result is explained by the fact that analytical expressions for the scores of the
auxiliary models are available in this experiment. As an aside, it may appear to be a curious result
that MCMC is superior to SML in terms of speed, since both methods are similar in the sense that the
sample is augmented in each case by generating data. The resolution of this paradox is to be found
in the guiding principle of reasonable accuracy. In order to obtain broadly similar accuracy, the time
discretisation in the case of SML (∆t = 1/120) is finer than that required by MCMC (∆t = 1/60).
This discrepancy stems from the fact that the augmented datums are used differently by the two
procedures. Moreover, as noted previously, the implementation of MCMC does take advantage of
the particular forms of the benchmark models in the drawing of parameters.

To conclude, the best combinations of accuracy and speed are delivered by the EF and HPE ap-
proaches. As noted earlier, however, both these approaches are particularly suited to these specific
problems and this result should not be taken as a blanket recommendation that they are to be re-
garded as the automatic methods of choice. Although inferior to EF and HPE in terms of the speed,
the PDE and SML-IS methods also deliver the EML parameter estimates but have the additional
advantage of being truly generic in the sense that once the methods are coded, they can be applied to
all parameter estimation problems, whether linear or non-linear, simply by changing the specification
of the drift and diffusion functions in the code.
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CIR Process Mean error in α Mean error in β Mean error in σ Time
(RMS error in α) (RMS error in β) (RMS error in σ) (sec)

EML 0.1097 0.0011 0.0002 0.0374
(0.1803) (0.0224) (0.0032)

DML 0.1054 0.0012 −0.0009 0.0008
(0.1746) (0.0224) (0.0033)

DML-SO 0.1088 0.0011 0.0002 0.0143
(0.1794) (0.0223) (0.0032)

PDE 0.1102 0.0012 0.0000 8.1283
(0.1806) (0.0224) (0.0032)

SML-IS-EUL 0.1094 0.0012 0.0000 13.0960
(0.1797) (0.0224) (0.0032)

SML-IS-S0 0.1098 0.0012 0.0002 20.6624
(0.1803) (0.0224) (0.0032)

SML-KD 0.1093 0.0073 −0.0008 4.3654
(0.1924) (0.0360) (0.0042)

FHPE 0.1097 0.0012 0.0002 0.0324
(0.1802) (0.0223) (0.0032)

IHPE 0.1097 0.0012 0.0002 0.0362
(0.1802) (0.0223) (0.0032)

GMM 0.1176 0.0139 −0.0013 0.0124
(0.1874) (0.3511) (0.0036)

CF 0.0861 0.0130 −0.0003 0.0459
(0.1701) (0.3857) (0.0038)

EMM 0.1095 0.0013 0.0001 2.0555
(0.1809) (0.0227) (0.0005)

EF 0.1100 0.0012 0.0002 0.0151
(0.1805) (0.0224) (0.0033)

MCMC 0.1109 0.0013 0.0003 8.6636
(0.1802) (0.0224) (0.0032)

Table 1: Bias and RMSE of parameter estimates for the CIR process, for 2000 repetitions
of the experiment with a sample size of 500. RMSEs are shown in parentheses.
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OU Process Mean error in α Mean error in β Mean error in σ Time
(RMS error in α) (RMS error in β) (RMS error in σ) (sec)

EML 0.1101 −0.0006 0.0001 0.0015
(0.1780) (0.0227) (0.0010)

DML 0.1055 −0.0005 −0.0003 0.0007
(0.1716) (0.0227) (0.0010)

DML-SO 0.1101 −0.0006 0.0001 0.0033
(0.1780) (0.0227) (0.0010)

PDE 0.1100 −0.0005 0.0000 8.1121
(0.1779) (0.0227) (0.0010)

SML-IS-EUL 0.1096 −0.0006 0.0000 12.1218
(0.1773) (0.0227) (0.0009)

SML-IS-S0 0.1099 −0.0006 0.0001 17.4021
(0.1778) (0.0227) (0.0010)

SML-KD 0.1103 −0.0005 −0.0003 1.4544
(0.1897) (0.0269) (0.0012)

FHPE 0.1100 −0.0006 0.0001 0.0270
(0.1779) (0.0227) (0.0010)

IHPE 0.1101 −0.0006 0.0001 0.0255
(0.1780) (0.0227) (0.0010)

GMM 0.1051 −0.0006 −0.0004 0.0075
(0.1723) (0.0228) (0.0010)

CF 0.1292 −0.0008 −0.0004 0.1096
(0.1986) (0.0231) (0.0011)

EMM 0.1089 −0.0006 0.0000 0.9790
(0.1774) (0.0228) (0.0010)

EF 0.1102 −0.0005 0.0001 0.0151
(0.1780) (0.0227) (0.0010)

MCMC 0.1116 −0.0005 0.0001 6.5898
(0.1788) (0.0227) (0.0001)

Table 2: Bias and RMSE of parameter estimates for the OU process, for 2000 repetitions
of the experiment with a sample size of 500. RMSEs are shown in parentheses.
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CIR Process α β σ
Mean diff. from EML Mean diff. from EML Mean diff. from EML

(Std. dev.) (Std. dev.) (Std. dev.)

DML −0.0043 0.0001 −0.0011
(0.0138) (0.0024) (0.0007)

DML-SO −0.0009 0.0000 0.0000
(0.0112) (0.0027) (0.0001)

PDE 0.0005 0.0001 −0.0002
(0.0077) (0.0025) (0.0001)

SML-IS-EUL −0.0003 0.0001 −0.0002
(0.0083) (0.0026) (0.0001)

SML-IS-SO 0.0001 0.0001 0.0000
(0.0059) (0.0025) (0.0001)

SML-KD −0.0004 0.0061 −0.0010
(0.0630) (0.0258) (0.0024)

FHPE 0.0000 0.0001 0.0000
(0.0017) (0.0023) (0.0000)

IHPE 0.0000 0.0001 0.0000
(0.0015) (0.0023) (0.0000)

GMM 0.0079 0.0128 −0.0015
(0.0618) (0.3472) (0.0012)

CF −0.0236 0.0119 −0.0005
(0.0375) (0.3813) (0.0020)

EMM −0.0003 0.0002 −0.0001
(0.0273) (0.0036) (0.0005)

EF 0.0002 0.0001 0.0000
(0.0063) (0.0024) (0.0003)

MCMC 0.0012 0.0001 0.0001
(0.0090) (0.0025) (0.0006)

Table 3: Mean difference between the various parameter estimates and the EML
estimates for the CIR process, for 2000 repetitions of the experiment with a sample
size of 500. The standard deviation of these differences is shown in parentheses.
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OU Process α β σ
Mean diff. from EML Mean diff. from EML Mean diff. from EML

(Std. dev.) (Std. dev.) (Std. dev.)

DML −0.0046 0.0001 −0.0004
(0.0053) (0.0030) (0.0002)

DML-SO 0.0000 0.0000 0.0000
(0.0000) (0.0001) (0.0000)

PDE −0.0001 0.0001 0.0000
(0.0058) (0.0031) (0.0000)

SML-IS-EUL −0.0005 0.0000 0.0000
(0.0040) (0.0005) (0.0000)

SML-IS-SO −0.0002 0.0000 0.0000
(0.0063) (0.0005) (0.0000)

SML-KD 0.0002 0.0001 −0.0003
(0.0623) (0.0147) (0.0007)

FHPE 0.0000 0.0000 0.0000
(0.0006) (0.0001) (0.0000)

IHPE 0.0000 0.0000 0.0000
(0.0003) (0.0000) (0.0000)

GMM −0.0050 0.0000 −0.0005
(0.0150) (0.0017) (0.0002)

CF −0.0100 0.0000 −0.0004
(0.0112) (0.0015) (0.0003)

EMM −0.0011 0.0000 0.0000
(0.0126) (0.0035) (0.0001)

EF 0.0191 −0.0002 −0.0004
(0.0372) (0.0045) (0.0003)

MCMC 0.0015 0.0000 0.0001
(0.0043) (0.0030) (0.0001)

Table 4: Mean difference between the various parameter estimates and the EML
estimates for the OU process, for 2000 repetitions of the experiment with a sample
size of 500. The standard deviation of these differences is shown in parentheses.
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6 Conclusion

There are now a large number of methods for estimating the parameters of SDEs. This paper provides
a comprehensive evaluation and comparison of most of these methods. Attention is focused on the
univariate SDE with no latent factors. In terms of the evidence presented in this paper regarding the
ease of implementation, accuracy and speed of the estimation methods considered, three estimators
perform particularly well. These are the procedures based on Hermite polynomial expansions, the
method of finite differences and simulated maximum likelihood based on an importance sampling
algorithm. Of these three estimators, the procedures based on Hermite polynomial expansions are
by far the quickest to run, but the other two are more generic procedures that are easier to generalise
to provide greater accuracy when applied to non-standard problems. While the performance of an
estimating function approach based on eigenfunctions is also impressive in terms of accuracy and
speed, the procedure is difficult to implement and is particularly problem specific.
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Appendix 1: Fokker-Planck equation

Recall the one-dimensional, time-homogeneous SDE

dX = µ(X; θ) dt + g(X; θ) dW (110)

where dW is the differential of the Wiener process and the instantaneous drift µ(x; θ) and instanta-
neous diffusion g2(x; θ) are prescribed functions of state. The task is to estimate the parameters θ

from a sample of (N +1) observations X0, . . . , XN of the stochastic process at known times t0, . . . , tN .
ML estimation of the parameters θ requires the construction of the likelihood function which, in
turn, requires that the transitional PDF of the process be known for each transition. This function is
the solution of the Fokker-Planck equation and therefore this equation and its solution play a central
role in parameter estimation for SDEs.

Let X(t) be the solution of equation (110) satisfying the initial condition X(t0) = X0, then X(t) is
a stochastic process with a state space S that is determined by the form of the drift and diffusion
specifications. For t > t0, the distribution of X(t) is captured by f(x, t) ≡ f( (x, t) | (X0, t0);θ), the
transitional PDF of the process at time t. It will be shown that f(x, t) satisfies the Fokker-Planck
equation

∂f

∂t
=

∂

∂x

(1
2

∂(g2(x; θ)f)
∂x

− µ(x; θ)f
)

x ∈ S, t > t0 , (111)

with initial and boundary conditions

f(x, t0) = δ(x−X0) , x ∈ S ,

q = µ(x; θ)f − 1
2

∂(g2(x; θ)f)
∂x

= 0 , x ∈ ∂S, t > t0 ,
(112)

where δ(x) is the usual Dirac delta function, q = q(x, t) is the flux of probability density at time
t and state x and ∂S denotes the boundary of the region S. Briefly, the initial condition in (112)
asserts that the process is known to start at X0 at time t0 and the boundary conditions assert that
no probability can cross the boundaries of S thereby ensuring that the probability mass within S is
conserved as the process evolves.

In essence, the Fokker-Planck equation is a conservation law expressing the fact that probability mass
cannot be created or destroyed, that is, it is a conserved quantity. The mass of probability contained
within the interval [x−∆x, x + ∆x] ⊂ S is

∫ x+∆x

x−∆x
f(u, t) du

where f(u, t) is the transitional PDF of X(t) at time t. Conservation of probability mass requires
that the rate of change of the probability mass within [x−∆x, x + ∆x] exactly balances the rate at
which probability mass enters this interval across its boundary points, that is,

d

dt

∫ x+∆x

x−∆x
f(u, t) du = q(x−∆x, t)− q(x + ∆x, t) (113)
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where q(u, t) is the flux of probability mass at state u and time t. The conservation law from which
the Fokker-Planck equation is derived is obtained from equation (113) by means of the identities

∂f(x, t)
∂t

= lim
∆x→0+

1
2∆x

∫ x+∆x

x−∆x

∂f(u, t)
dt

du ,

−∂q(x, t)
∂x

= lim
∆x→0+

q(x−∆x, t)− q(x + ∆x, t)
2h

.

(114)

Equation (113) is divided by 2∆x, and then identities (114) are used to deduce the conservation law

∂f(x, t)
∂t

= −∂q(x, t)
∂x

. (115)

The Fokker-Planck equation is simply an application of equation (115) in which the SDE (110) is used
to construct the relationship between the probability flux q(x, t) and the transitional PDF f(x, t).

Let ψ(x, t) be an arbitrary differentiable function of state. The following analysis shows how to
compute the flux of ψ when X evolves in accordance with equation (110). This general result,
when applied to the transitional PDF f(x, t), will establish the Fokker-Planck equation (111). The
argument relies on the observation that in a small interval (t, t + ∆t), the local evolution of the
process in the interval (u, u + ∆u) is approximately Gaussian with mean value u + µ(u)∆t and
variance g2(u)∆t where it should be noted that the dependence of the drift and diffusion functions
on the parameters θ has been suppressed since these parameters play no role in the analysis. Let Φ
denote the CDF of the standard normal, and let u = x be a rigid boundary in S. The fraction of the
probability located in (u, u + ∆u) at time t where u < x that has diffused into the region u > x is
asymptotically

1− Φ
(x− u− µ(u)∆t

g(u)
√

∆t

)
= Φ

(−x + u + µ(u)∆t

g(u)
√

∆t

)
,

while the fraction of the probability located in (u, u + ∆u) at time t where u > x that has diffused
into the region u < x is asymptotically

Φ
(x− u− µ(u)∆t

g(u)
√

∆t

)
.

Therefore the imbalance between diffusion of ψ from the region u < x into the region u > x and from
the region u > x into the region u < x is asymptotically∫ x

−∞
ψ(u, t)Φ

(−x + u + µ(u)∆t

g(u)
√

∆t

)
du−

∫ ∞

x
ψ(u, t)Φ

(x− u− µ(u)∆t

g(u)
√

∆t

)
du .

The flux of ψ is therefore

qψ = lim
∆t→0+

1
∆t

[ ∫ x

−∞
ψ(u, t)Φ

(−x + u + µ(u)∆t

g(u)
√

∆t

)
du−

∫ ∞

x
ψ(u, t)Φ

(x− u− µ(u)∆t

g(u)
√

∆t

)
du

]
. (116)

This expression for the flux of ψ is simplified by the substitutions u = x− λ
√

∆t in the first integral
of expression (116) and u = x + λ

√
∆t in the second integral of expression (116) to obtain

qψ = lim
∆t→0+

1√
∆t

[ ∫ ∞

0
ψ(x− λ

√
∆t, t) φ

(−λ + µ(x− λ
√

∆t)
√

∆t

g(x− λ
√

∆t)

)
dλ

−
∫ ∞

0
ψ(x + λ

√
∆t, t) φ

(−λ− µ(x + λ
√

∆t)
√

∆t

g(x + λ
√

∆t)

)
dλ

]
.

(117)
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The computation of this limit is best achieved by expanding the integrand as a Maclaurin expansion
in
√

∆t. The procedure begins by observing that

−λ + µ(x− λ
√

∆t)
√

∆t

g(x− λ
√

∆t)
= − λ

g(x)
−

(µ(x)
g(x)

− λ2g ′(x)
g2(x)

)√
∆t + O(∆t)

−λ− µ(x + λ
√

∆t)
√

∆t

g(x + λ
√

∆t)
= − λ

g(x)
−

(µ(x)
g(x)

− λ2g ′(x)
g2(x)

)√
∆t + O(∆t) .

Thereafter the limiting procedure is straightforward and leads to the expression

qψ =
∫ ∞

0

[
− 2

∂ψ(x, t)
∂x

Φ(−λ/g) + 2ψ(x, t)Φ ′(−λ/g)
(µ(x)

g(x)
− λ2g ′(x)

g2(x)

) ]
dλ . (118)

This integral is now simplified by means of the change of variable y = λ/g to give

qψ =
∫ ∞

0

[
− 2g2(x)

∂ψ(x, t)
∂x

yΦ(−y) + 2ψ(x, t)Φ ′(−y)
(
µ(x)− y2g(x)g ′(x)

) ]
dy . (119)

It remains to note that Φ(y), the CDF of the standard normal, satisfies
∫ ∞

0
Φ ′(−y) dy =

1
2

,

∫ ∞

0
y2 Φ ′(−y) dy =

1
2

,

∫ ∞

0
y Φ(−y) dy =

1
4

.

In conclusion, expression (119) for the flux of ψ finally yields

qψ(x, t) = µ(x; θ)ψ(x, t)− 1
2

∂

∂x

(
g2(x; θ)ψ(x, t)

)
. (120)

Expression (120) gives the flux of an arbitrary function ψ(x, t) when the underlying stochastic process
evolves in accordance with equation (110). When ψ is taken to be the transitional PDF of the process
itself, then expression (120) now relates the probability flux q(x, t) of the process to the transitional
PDF f(x, t) by the formula

q(x, t) = µ(x; θ)f(x, t)− 1
2

∂

∂x

(
g2(x; θ)f(x, t)

)
. (121)

The Fokker-Planck equation in one dimension follows immediately from the conservation law (115).
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Appendix 2: Derivation of the transitional PDF of the OU and CIR processes

The Fokker-Planck equation is linear in the unknown transitional PDF and therefore one way to
obtain solutions of this equation is by means of integral transforms. The characteristic function is
defined to be the Fourier transform of the transitional PDF if S = R and the Laplace transform
if S = R+. After presenting a general introduction to the characteristic function, the method of
characteristics is used to derive closed-form expressions for the transitional PDF of the OU and CIR
models respectively.

Characteristic function Suppose that X is the stochastic process satisfying the initial boundary
value problem posed by

∂f

∂t
=

∂

∂x

(1
2

∂(g2(x; θ)f)
∂x

− µ(x; θ)f
)

x ∈ S, t > t0 , (122)

with initial and boundary conditions

f(x, t0) = δ(x−X0) , x ∈ S ,

q = µ(x; θ)f − 1
2

∂(g2(x; θ)f)
∂x

= 0 , x ∈ ∂S, t > t0 ,
(123)

where δ(x) is the usual Dirac delta function, q = q(x, t) is the flux of probability density at time t

and state x and ∂S denotes the boundary of the region S.

The characteristic function of X is defined by

f̃(p, t) =
∫

S
e−px f(x, t) dx (124)

where f(x, t) ≡ f( (x, t) | (X0, t0); θ) is the transitional PDF of X and p is a parameter which is
restricted to those regions of the complex plane for which the convergence of the integral defining
f̃(p, t) is assured. If S = R, as occurs in the case of the OU process, then p = iω where ω is real-
valued, i2 = −1 and the characteristic function is the familiar Fourier transform of the transitional
PDF. On the other hand, if S = R+ (or any semi-infinite interval) as happens in the case of the CIR
process, then p is a complex number that is typically restricted to the half-plane Re(p) > b where b

is defined by the requirement that | f(x, t) | < Mebx for all x > 0 and the characteristic function is
now the Laplace transform of the transitional PDF.

Independent of the choice of transform, the Fokker-Planck equation given in (122) is first used to
show that

∂ f̃

∂t
=

∫

S
e−px ∂f(x, t)

∂t
dx = −

∫

S
e−px ∂q(x, t)

∂x
dx = −p

∫

S
e−px q(x, t) dx = −p q̃ (125)

where q̃(p, t) is the transform of the probability flux and the boundary conditions q = 0 required to
conserve transitional probability density in S likewise causes the contributions from the boundary of
S to vanish in the derivation of equation (125). A further integration by parts gives

q̃ =
∫

S
e−px µ(x; θ)f(x, t) dx− 1

2

[
e−pxg2(x; θ)f(x, t)

]
∂S
− p

2

∫

S
e−pxg2(x; θ)f(x, t) dx . (126)
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Typically the product g2(x; θ)f(x, t) → 0 as x → ∂S, and with this proviso, the characteristic
function17 of X is the solution of the initial value problem

∂ f̃

∂t
=

p2

2

∫

S
e−pxg2(x; θ)f(x, t) dx− p

∫

S
e−px µ(x;θ)f(x, t) dx , f̃(p, t0) = e−pX0 . (127)

Once the characteristic function has been found, the transitional PDF may, in principle, be obtained
through the use of an inverse transform.

Cox, Ingersoll and Ross model The square-root process proposed by Cox, Ingersoll and Ross
(1985) as a model of the instantaneous short term interest rate, commonly referred to as the CIR
model, evolves according to the SDE

dX = α(β −X) dt + σ
√

X dw (128)

where α (speed of adjustment), β (the mean interest rate) and σ (volatility control) are positive
parameters to be estimated. Thus the CIR process exhibits mean reversion of X to the state X = β.
Most importantly, however, the properties g(0;θ) = 0 and µ(0;θ) > 0 ensure that S = R+.

The transitional probability density function of the CIR process will now be constructed using the
method of characteristics. Since the state space of the CIR process is R+, the Laplace transform
provides a suitable characterisation of the process. The crucial idea is to recognise that whenever
µ(x;θ) and g2(x; θ) are affine functions of state, their Laplace (or Fourier) transforms can be expressed
as linear combination of the characteristic function itself and its partial derivative with respect to
the parameter p. The drift and diffusion specifications for the CIR process in equation (128) are
respectively µ(x; θ) = α(β − x) and g2(x;θ) = σ2x, and therefore

∫ ∞

0
e−pxg2(x; θ)f(x, t) dx = −σ2 ∂ f̃

∂p
,

∫ ∞

0
e−px µ(z; θ)f(x, t) dx = αβ f̃ + α

∂ f̃

∂p
. (129)

It now follows immediately from equation (127) that the characteristic function of the CIR process
starting in state Xk at time tk satisfies the initial value problem

∂ f̃

∂t
= −

(p2σ2

2
+ α p

)∂f̃

∂p
− pαβf̃ , f̃(p, tk) = e−pXk .

This partial differential equation can be solved immediately using the method of characteristics.
Briefly, on the curve defined by the solution of the initial value problem

dp

dt
=

p2σ2

2
+ α p , p(tk) = s , (130)

the characteristic function f̃ satisfies the initial value problem

df̃

dt
=

∂f̃

∂t
+

∂f̃

∂p

dp

dt
= −pαβf̃ , f̃(s, tk) = e−sXk . (131)

17It should be noted that the procedure described here in one dimension extends to multi-dimensions. The Fokker-

Planck equation becomes the conservation equation ∂f(x, t)/∂t + divq = 0 and integration by parts generalises to

Gauss’s theorem.
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Equation (130) is a Bernoulli equation with particular solution

p =
2αs eα(t−tk)

2α + s σ2(1− eα(t−tk))
. (132)

This solution for p is now substituted into equation (131) and the resulting differential equation
integrated with respect to t to obtain

f̃(s, t) = e−sXk

[
1 +

s σ2

2α

(
1− eα(t−tk)

) ]2α β/σ2

. (133)

The characteristic function of X at time tk+1 is now constructed by eliminating the parameter s

between equations (132) and (133). After some straightforward algebra it can be shown that

f̃(p, tk+1) = c ν+1 e−u (p + c)−ν−1 exp
[ cu

p + c

]
(134)

where c, u, v and ν are defined respectively by

c =
2α

σ2(1− e−α(tk+1−tk))
, u = cXke

−α(tk+1−tk) , v = cx , ν =
2αβ

σ2
− 1 . (135)

The final stage in this argument is to observe from tables of Laplace transforms18 that
∫ ∞

0

( x

η

)ν/2
Iν(2

√
ηx )e−px dx = p−ν−1 eη/p , Re (ν) > −1

where Iν(x) is the modified Bessel function of the first kind of order ν. This identity in combination
with the shift theorem for Laplace transforms, namely that the function e−cxf(x, tk+1) has Laplace
transform f̃(p + c, tk+1), indicates that the CIR process which started at Xk at time tk diffuses to a
final state at time tk+1 that is non-central chi-squared distributed with transitional PDF

f(x |Xk; θ) = c
(v

u

) q
2
e−(

√
u−√v)2 e−2

√
uvIq(2

√
uv) (136)

where c, u, v and ν are defined in (135). This transitional PDF may now be used in combination
with expression (2) to estimate the values of the parameters of the CIR model (128) by EML.

Ornstein-Uhlenbeck model The OU process proposed by Vasicek (1977) evolves according to
the SDE

dX = α(β −X) dt + σ dW (137)

where α (speed of adjustment), β (the mean interest rate) and σ (volatility control) are again the
parameters to be estimated. The OU process also exhibits mean reversion of X to the state X = β,
but unlike the CIR process, the domain of the state variable is unrestricted, that is, S = R. The
analysis of the OU process mirrors that of the CIR process with the exception that the characteristic

18One useful source of Fourier and Laplace transforms with their inverses is provided in Volumes I and II of the

Bateman Manuscript Project (1954). The Laplace transform needed here is result (35) on page 245 of Volume I.
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function is now the Fourier transform of the transitional PDF. In this case p = iω where i2 = −1.
Briefly, the characteristic function of the OU process satisfies the initial value problem

∂f̃

∂t
= −

(ω2σ2

2
+ iωαβ

)
f̃ − αω

∂f̃

∂ω
, f̃(ω, tk) = e−iωXk . (138)

The characteristic procedure described in detail in the treatment of the CIR process is now used to
solve equation (138) and eventually leads to the characteristic function

f̃(ω, tk+1) = exp
[
− iω

(
Xk + (β −Xk)(1− e−α(tk+1−tk))

)− ω2σ2

4α

(
1− e−2α(tk+1−tk)

)]
. (139)

This is the characteristic function of the Normal distribution with mean value Xk + (β − Xk)(1 −
e−α(tk+1−tk)) and variance σ2

(
1− e−2α(tk+1−tk)

)
/2α. The transitional PDF of X at time tk+1 for the

process starting at Xk at time tk therefore has closed-form expression

f(x |Xk; θ) =
1√
2πV

exp
[
− (x− x̄)2

2V

]
(140)

where

V =
σ2(1− e−2α(tk+1−tk))

2α
, x̄ = β + (Xk − β) e−α(tk+1−tk) .

This transitional PDF may now be used in combination with expression (2) to estimate the values
of the parameters of the OU model (137) by EML.
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Appendix 3: Discrete maximum likelihood

CIR process The CIR process evolves according to the SDE

dx = α(β − x)dt + σ
√

x dW (141)

where α, β and σ are parameters to be estimated from (N + 1) observations X0, . . . , XN of the
process at the deterministic times t0, . . . , tN . Traditional DML uses the Euler-Maruyama algorithm
to approximate the solution of equation (141) by one integration step of duration ∆k = (tk+1 − tk)
to obtain

X = Xk + α(β −Xk)∆k + σ
√

Xk εk (142)

where εk ∼ N(0, ∆k). To maintain generality, the DML procedure is developed for observations
that are spaced non-uniformly in time, although in practice it is often the case that ∆k = ∆ for all
values of k, that is, the observations are spaced uniformly in time. Equation (142) indicates that the
transitional density of (X, tk+1) for a CIR process starting at (Xk, tk) is

f( (X, tk+1) | (Xk, tk);θ) =
1√

2πσ2Xk∆k

exp
[
−

(
X −Xk − α(β −Xk)∆k

)2

2σ2Xk∆k

]
,

and therefore the likelihood L of observing the states X0, . . . , XN at the times t0, . . . , tN is

L =
N−1∏

k=0

1√
2πσ2Xk∆k

exp
[
−

(
X −Xk − α(β −Xk)∆k

)2

2σ2Xk∆k

]
. (143)

By choice of the parameters α, β and σ in expression (143), the traditional DML procedure either
seeks to maximise the value of L, or alternatively, seeks to minimise the value of the negative log-
likelihood

− logL =
1
2

N−1∑

k=0

(
Xk+1 −Xk − α(β −Xk)∆k

)2

σ2Xk∆k
+

N

2
log (2πσ2Xk∆k). (144)

The partial derivatives of the negative log-likelihood function with respect to the parameters α, β

and σ are respectively

−∂ logL
∂α

= − 1
σ2

N−1∑

k=0

(
β −Xk

)(
Xk+1 −Xk − α(β −Xk)∆k

)

Xk
,

−∂ logL
∂β

= − α

σ2

N−1∑

k=0

Xk+1 −Xk − α(β −Xk)∆k

Xk
,

−∂ logL
∂σ

= − 1
σ3

N−1∑

k=0

(
Xk+1 −Xk − α(β −Xk)∆k

)2

Xk∆k
+

N

σ
.

(145)

The optimal values of the parameters, say α̂, β̂ and σ̂, are determined by the requirement that the
gradient of the negative log-likelihood function is zero. The third equation of (145) indicates that

σ̂2 =
1
N

N−1∑

k=0

(
Xk+1 −Xk − α̂( β̂ −Xk)∆k

)2

Xk∆k
, (146)
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and so σ̂ can be recovered immediately once the optimal values of α̂ and β̂ are determined. On the
other hand, the optimal values of α̂ and β̂ satisfy

N−1∑

k=0

(
β̂ −Xk

)(
Xk+1 −Xk − α̂( β̂ −Xk)∆k

)

Xk
= 0 ,

N−1∑

k=0

Xk+1 −Xk − α̂( β̂ −Xk)∆k

Xk
= 0 .

(147)

The second of equations (147) is used to simplify the first of equations (147) to obtain

XN −X0 =
N−1∑

k=0

Xk+1 −Xk = α̂

N−1∑

k=0

( β̂ −Xk)∆k = α̂
(

β̂

N−1∑

k=0

∆k −
N−1∑

k=0

Xk∆k

)
.

The second equation in (147) may itself be reorganised to give

N−1∑

k=0

Xk+1 −Xk

Xk
= α̂

(
β̂

N−1∑

k=0

∆k

Xk
−

N−1∑

k=0

∆k

)
.

To summarise the situation to date, the optimal values of the parameters α and β satisfy the equations

α̂
(

β̂
N−1∑

k=0

∆k −
N−1∑

k=0

Xk∆k

)
= XN −X0 ,

α̂
(

β̂
N−1∑

k=0

∆k

Xk
−

N−1∑

k=0

∆k

)
=

N−1∑

k=0

Xk+1 −Xk

Xk
.

(148)

Each summation appearing in these equations is computable from the observations and times. Clearly
α̂ and β̂ may be calculated directly from equations (148), for example, by dividing the first equation
by the second equation to eliminate α̂ and generate a linear equation to be solved for β̂. Once α̂

and β̂ are calculated, σ̂ is determined from equation (146).

OU process The OU process evolves according to the SDE

dx = α(β − x)dt + σ dW (149)

where α, β and σ are parameters to be estimated from (N +1) observations X0, . . . , XN of the process
at the deterministic times t0, . . . , tN . The Euler-Maruyama algorithm is again used to approximate
the solution of equation (149) by one integration step of duration ∆k = (tk+1 − tk) to get

X = Xk + α(β −Xk)∆k + σ εk (150)

where εk ∼ N(0,∆k). As with the DML development of the CIR process, the treatment of the OU
process again maintains generality by assuming that the observations are spaced non-uniformly in
time, although in practice this is often not the case. Equation (150) indicates that the transitional
density of (X, tk+1) for an OU process starting at (Xk, tk) is

f( (X, tk+1) | (Xk, tk);θ) =
1√

2πσ2∆k

exp
[
−

(
X −Xk − α(β −Xk)∆k

)2

2σ2∆k

]
,
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and therefore the likelihood L of observing the states X0, . . . , XN at the times t0, . . . , tN is

L =
N−1∏

k=0

1√
2πσ2∆k

exp
[
−

(
X −Xk − α(β −Xk)∆k

)2

2σ2∆k

]
. (151)

By choice of the parameters α, β and σ in expression (151), the traditional DML procedure either
seeks to maximise the value of L, or alternatively, seeks to minimise the value of the negative log-
likelihood

− logL =
1
2

N−1∑

k=0

(
Xk+1 −Xk − α(β −Xk)∆k

)2

σ2∆k
+

N

2
log (2πσ2∆k). (152)

The partial derivatives of the negative log-likelihood function with respect to the parameters α, β

and σ are respectively

−∂ logL
∂α

= − 1
σ2

N−1∑

k=0

(
β −Xk

)(
Xk+1 −Xk − α(β −Xk)∆k

)
,

−∂ logL
∂β

= − α

σ2

N−1∑

k=0

(
Xk+1 −Xk − α(β −Xk)∆k

)
,

−∂ logL
∂σ

= − 1
σ3

N−1∑

k=0

(
Xk+1 −Xk − α(β −Xk)∆k

)2

∆k
+

N

σ
.

(153)

The optimal values of the parameters, say α̂, β̂ and σ̂, are determined by the requirement that the
gradient of the negative log-likelihood function is zero. The third equation of (153) indicates that

σ̂2 =
1
N

N−1∑

k=0

(
Xk+1 −Xk − α̂( β̂ −Xk)∆k

)2

∆k
, (154)

and so σ̂ can be recovered immediately once the optimal values of α̂ and β̂ are determined. On the
other hand, the optimal values of α̂ and β̂ satisfy

N−1∑

k=0

(
β̂ −Xk

)(
Xk+1 −Xk − α̂( β̂ −Xk)∆k

)
= 0 ,

N−1∑

k=0

(
Xk+1 −Xk − α̂( β̂ −Xk)∆k

)
= 0 .

(155)

The second of equations (155) may be reorganised immediately to give

XN −X0 =
N−1∑

k=0

Xk+1 −Xk = α̂
N−1∑

k=0

( β̂ −Xk)∆k = α̂
(

β̂
N−1∑

k=0

∆k −
N−1∑

k=0

Xk∆k

)
.

Alternatively, the second of equations (155) may be used to simplify the first of equations (155) to
get

N−1∑

k=0

(
Xk+1 −Xk

)
Xk = α̂

(
β̂

N−1∑

k=0

Xk∆k −
N−1∑

k=0

X2
k∆k

)
.
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To summarise the situation to date, the optimal values of the parameters α and β satisfy the equations

α̂
(

β̂

N−1∑

k=0

∆k −
N−1∑

k=0

Xk∆k

)
= XN −X0 ,

α̂
(

β̂
N−1∑

k=0

Xk∆k −
N−1∑

k=0

X3
k∆k

)
=

N−1∑

k=0

Xk

(
Xk+1 −Xk

)
.

(156)

Each summation appearing in these equations is computable from the observations and times. Clearly
α̂ and β̂ may be calculated directly from equations (156), for example, by dividing the first equation
by the second equation to eliminate α̂ and generate a linear equation to be solved for β̂. Once α̂

and β̂ are calculated, σ̂ is determined from equation (154).
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Appendix 4: Infinitesimal operator

The infinitesimal operator has the property that it expresses the time derivative of an expected value
as an expected value taken in state space. This property is central to many estimation methods,
including the Hermite polynomial, method of moments and estimating function approaches.

Let ψ = ψ(x) be a function of state, then the expected value of ψ is

E [ ψ ](t) =
∫

S
ψ(x)f(x, t) dx (157)

and evolves as a function of time with initial value ψ(X0). The conservation law representation of
the Fokker-Planck equation given in (115) is now used to show that

dE [ ψ ]
dt

=
∫

S
ψ(x)

∂f(x, t)
∂t

dx = −
∫

S
ψ(x)

∂q(x, t)
∂x

dx =
∫

S
q(x, t)

dψ

dx
dx (158)

where the usual contribution to the value of the integral from boundary terms vanishes in equation
(158) since q = 0 on ∂S. A further integration by parts applied to equation (158) gives

dE [ ψ ]
dt

=
∫

S

(
µ(x; θ)

dψ

dx
+

g2(x;θ)
2

d2ψ

dx2

)
f(x, t) dx (159)

where the boundary contributions to the value of the integral are again assumed to vanish on the
basis that g2(x; θ)f(x, t)ψ′(x) → 0 for all t > t0 as x → ∂S. The infinitesimal operator of the
diffusion X is now defined by

Aθ(ψ) = µ(x; θ)
dψ

dx
+

g2(x;θ)
2

d2ψ

dx2
(160)

and has the property that
dE [ψ ]

dt
= E [Aθ(ψ) ] . (161)

Furthermore, provided the drift and diffusion specifications of the model SDE in (1) are autonomous
functions of state, then result (161) is a special case of the general result

dnE [ψ ]
dtn

= E [An
θ(ψ) ] (162)

where n is any positive integer.
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Appendix 5: Marginal distributions of the parameters of the CIR and OU processes

Given a sample of (N + 1) observations of the process

dX = µ(X; θ) dt + g(X; θ) dW (163)

MCMC methods proceed by dividing the transition from (Xk, tk) to (Xk+1, tk+1) into m sub-transitions
of duration ∆t = (tk+1 − tk)/m to give mN sub-transitions in total. The likelihood function for this
augmented sample is constructed from the product of the traditional DML likelihoods of these sub-
transitions and is given by

L =
mN−1∏

j=0

1√
2πg2(x∗j ;θ)∆t

exp
[
−

(
x∗j+1 − x∗j − µ(x∗j ;θ)∆t

)2

2g2(x∗j ;θ)∆t

]

= exp
[
−

nM−1∑

j=0

(
x∗j+1 − x∗j − µ(x∗j ; θ)∆t

)2

2g2(x∗j ; θ)∆t

] mN−1∏

j=0

1√
2πg2(x∗j ;θ)∆t

.

(164)

Usually little is known about the prior distribution of the parameters, and consequently the likelihood
(164) is treated as a joint probability density for the parameters given the current values for the
unobserved datums. The CIR and OU processes to be considered in this article have drift specification
µ(x;θ) = κ − αx and diffusion specification g2(x; θ) = σ2h(x) where h(x) = 1 for the OU process
and h(x) = x for the CIR process. In particular, the drift specification is a linear function of its
parameters19 and is independent of σ. These properties of the drift and diffusion functions facilitate
the development of a procedure for drawing from the marginal distributions of the parameters.

Let θµ denote the model parameters excluding σ and let ν = mN , then for the class of models
characterised by the constitutive specifications µ = µ(x;θµ) and g2 = σ2h(x), the likelihood of the
augmented sample given initially by expression (164) can be further simplified into the form

L =
e−ψ/σ2

(2π∆t)ν/2

1
σν

( ν−1∏

j=0

h(x∗j )
)−1/2

(165)

where

ψ =
1

2∆t

ν−1∑

j=0

(x∗j+1 − x∗j − µ(x∗j ;θµ)∆t)2

h(x∗j )
.

The likelihood (165) is now scaled to a probability density function in σ and θµ to obtain

fσ(σ,θµ) = A
e−ψ/σ2

σν

( ν−1∏

j=0

h(x∗j )
)−1/2

(166)

where A is chosen to ensure that fσ(σ,θµ) encloses unit mass in parameter space. Let Z = ψ/σ2,
then the density of Z and θµ is constructed from fσ(σ,θµ) in the usual way to get

fZ(z,θµ) = fσ(σ,θµ)
dσ

dz
=

A

2
z(ν−3)/2e−z

ψ(ν−1)/2

( ν−1∏

j=0

h(x∗j )
)−1/2

. (167)

19Of course, in order to make this so, the drift function has been rewritten with αβ replaced by κ.
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Since fZ(z, θµ) is a product of a function of Z and a function of θµ then it follows immediately that
Z and θµ are independently distributed random variables. Clearly Z is Gamma-distributed with
parameter (ν − 1)/2, and therefore a realisation of σ is obtained directly from σ =

√
ψ(θµ)/Z by

drawing Z from the Gamma distribution once a realisation of θµ is available.

Again, it is clear from expression (167) for the joint probability density function of Z and θµ that
θµ has multivariate PDF proportional to

fθµ(θµ) =
B

ψ(ν−1)/2
. (168)

where B is a suitable sealing constant. Provided the specification of µ(x∗j ; θµ) is a linear function of
θ∗, as happens in both the CIR and OU processes where µ(x;θµ) = κ−αx, then ψ is a quadratic form
in the parameters θµ and therefore the parameters themselves are multivariate student-t distributed.

CIR and OU processes The procedure for drawing the parameters θµ is now illustrated for the
drift specification µ(x,θµ) = κ− αx. In this case

ψ =
1

2∆t

ν−1∑

j=0

(x∗j+1 − x∗j − (κ− αx∗j )∆t)2

h(x∗j )
= α2C1 − 2καC2 + κ2C3 + C4 + 2αC5 − 2κC6 (169)

where

C1 =
∆t

2

ν−1∑

j=0

x∗j
2

h(x∗j )
, C2 =

∆t

2

ν−1∑

j=0

x∗j
h(x∗j )

,

C3 =
∆t

2

ν−1∑

j=0

1
h(x∗j )

, C4 =
1

2∆t

ν−1∑

j=0

(x∗j+1 − x∗j )
2

h(x∗j )
,

C5 =
1
2

ν−1∑

j=0

x∗j (x
∗
j+1 − x∗j )
h(x∗j )

, C6 =
1
2

ν−1∑

j=0

(x∗j+1 − x∗j )
h(x∗j )

.

(170)

The expression for ψ is manipulated into standard form in two stages. First, the solutions α̂ and κ̂

of the equations ∂ψ/∂α = ∂ψ/∂κ = 0 are sought. Thus α̂ and κ̂ satisfy the linear equations

α̂C1 − κ̂C2 = −C5 − α̂C2 + κ̂C3 = C6

with solutions
α̂ =

C2C6 − C3C5

C1C3 − C2
2

, κ̂ =
C1C6 − C2C5

C1C3 − C2
2

. (171)

The solutions for α̂ and κ̂ are now used to re-express ψ in the more convenient form

ψ = C1

[
(α− α̂)− C2

C1
(κ− κ̂)

]2
+

(
C3 − C2

2

C1

)
(κ− κ̂)2 + χ (172)

where
χ =

C3C
2
5 + C1C

2
6 − 2C2C5C6 + C2

2C4 − C1C3C4

C2
2 − C1C3

.
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Two new variables ζ and η are now defined by

ζ =

√
C1

χ

[
(α− α̂)− C2

C1
(κ− κ̂)

]
, η =

√
C1C3 − C2

2

C1χ

(
κ− κ̂

)
. (173)

With respect to these new variables ψ = χ(ζ2 + η2 + 1) and the PDF from which the parameters α

and κ are to be drawn now takes the form

fθµ(θµ) =
B

χ(ν−1)/2

1
(ζ2 + η2 + 1)(ν−1)/2

. (174)

The value of α and κ are now straightforward to draw. First the marginal density of η is constructed
in the usual way by integrating ζ out of expression (174). The result of this calculation is that η

√
ν − 3

is student-t distributed with (ν− 3) degrees of freedom. The random variable η
√

ν − 3 is now drawn
and the value of η determined. Given η, expression (174) indicates that ζ

√
ν − 2/

√
1 + η2 is student-

t distributed with (ν − 2) degrees of freedom. Thus the value of ζ may be determined by drawing
ζ
√

ν − 2/
√

1 + η2 from a student-t distribution with (ν − 2) degrees of freedom. Thus the value of
ψ is now determined from which the parameter σ is obtained by drawing Z from the appropriate
Gamma distribution. Of course, knowledge of η and ζ enables the values of κ and α to be backed
out from formulae (173).
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Appendix 6: Eigenfunctions of the infinitesimal operator

CIR process The eigenfunctions φ(x) of the infinitesimal operator of the CIR process

dX = α(β −X)dt + σ
√

X dW (175)

are solutions of the ordinary differential equation

σ2x

2
d2φ

dx2
+ α(β − x)

dφ

dx
− λφ = 0 . (176)

Under the change of variable z = 2α x/σ2 equation (176) becomes

z
d2φ

dz2
+

(
ν + 1− z

)dφ

dz
− λ

α
φ = 0 , ν =

2αβ

σ2
− 1.

When λ = −αj this equation has the generalised Laguerre polynomial of degree j, namely Lν
j (z), as

one solution and so the estimating function procedure for the CIR process is based on the choice

φj(x) = Lν
j (2α x/σ2) , λj = −αj , j > 0. (177)

OU process The eigenfunctions φ(x) of the infinitesimal operator of the OU process

dX = α(β −X)dt + σ dW (178)

are solutions of the ordinary differential equation

σ2

2
d2φ

dx2
+ α(β − x)

dφ

dx
− λφ = 0 . (179)

Under the change of variable z =
√

α (x− β)/σ equation (179) becomes

d2φ

dz2
− 2z

dφ

dz
− 2λ

α
φ = 0

which is the generalised Hermite equation. This equation has the Hermite polynomial of degree j,
namely Hj(z), as one solution whenever λ = −αj and so the estimating function procedure for the
OU process is based on the choice

φj(x) = Hj

(√
α (x− β)/σ

)
, λj = −αj , j > 0 . (180)
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