8 research outputs found

    Ground State Energy of the One-Dimensional Discrete Random Schr\"{o}dinger Operator with Bernoulli Potential

    Full text link
    In this paper, we show the that the ground state energy of the one dimensional Discrete Random Schroedinger Operator with Bernoulli Potential is controlled asymptotically as the system size N goes to infinity by the random variable \ell_N, the length the longest consecutive sequence of sites on the lattice with potential equal to zero. Specifically, we will show that for almost every realization of the potential the ground state energy behaves asymptotically as π2ℓN+1)2\frac{\pi^2}{\ell_N+1)^2} in the sense that the ratio of the quantities goes to one

    BCS and BEC p-wave pairing in Bose-Fermi gases

    Full text link
    The pairing of fermionic atoms in a mixture of atomic fermion and boson gases at zero temperature is investigated. The attractive interaction between fermions, that can be induced by density fluctuations of the bosonic background, can give rise to a superfluid phase in the Fermi component of the mixture. The atoms of both species are assumed to be in only one internal state, so that the pairing of fermions is effective only in odd-l channels. No assumption about the value of the ratio between the Fermi velocity and the sound velocity in the Bose gas is made in the derivation of the energy gap equation. The gap equation is solved without any particular "ansatz" for the pairing field or the effective interaction. The p-wave superfluidity is studied in detail. By increasing the strength and/or decreasing the range of the effective interaction a transition of the fermion pairing regime, from the Bardeen-Cooper-Schrieffer state to a system of tightly bound couples can be realized. These composite bosons behave as a weakly-interacting Bose-Einstein condensate.Comment: 14 pages, 6 eps-figures. To be published in European Physical Journal

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Achieving high molecular conversion efficiency via a magnetic field pulse train

    No full text
    We investigate the process of production of ultracold molecules in an ultracold bosonic system with particle interaction via designing a magnetic field pulse train near a Feshbach resonance. This technique offers a high conversion efficiency up to 100% by tuning the pulse durations appropriately. The molecular conversion efficiency is related to the duration of each pulse, which can be derived analytically. It is found that the conversion efficiency is insensitive to the first pulse, highly sensitive to the second one, and very insensitive to the third one. The effects of particle interaction on conversion process are discussed as well.Physics, Condensed MatterSCI(E)EI0ARTICLE6null8
    corecore