19 research outputs found

    Reduced SLIT2 is associated with increased cell proliferation and arsenic trioxide resistance in acute promyelocytic Leukemia

    Get PDF
    The SLIT-ROBO axis plays an important role in normal stem-cell biology, with possible repercussions on cancer stem cell emergence. Although the Promyelocytic Leukemia (PML) protein can regulate SLIT2 expression in the central nervous system, little is known about SLIT2 in acute promyelocytic leukemia. Hence, we aimed to investigate the levels of SLIT2 in acute promyelocytic leukemia (APL) and assess its biological activity in vitro and in vivo. Our analysis indicated that blasts with SLIT2high transcript levels were associated with cell cycle arrest, while SLIT2low APL blasts displayed a more stem-cell like phenotype. In a retrospective analysis using a cohort of patients treated with all-trans retinoic acid (ATRA) and anthracyclines, high SLIT2 expression was correlated with reduced leukocyte count (p = 0.024), and independently associated with improved overall survival (hazard ratio: 0.94; 95% confidence interval: 0.92–0.97; p < 0.001). Functionally, SLIT2-knockdown in primary APL blasts and cell lines led to increased cell proliferation and resistance to arsenic trioxide induced apoptosis. Finally, in vivo transplant of Slit2-silenced primary APL blasts promoted increased leukocyte count (p = 0.001) and decreased overall survival (p = 0.002) compared with the control. In summary, our data highlight the tumor suppressive function of SLIT2 in APL and its deteriorating effects on disease progression when downregulated

    Downregulation of IL-6-induced STAT3 tyrosine phosphorylation by TGF-β1 is mediated by caspase-dependent and -independent processes

    No full text
    To explore the possible cross-talk between the IL-6 and TGF-β1 pathways in AML blast cells, the effect of TGF-β1 pretreatment on IL-6-induced STAT3 tyrosine phosphorylation was studied. A reduction of STAT3 tyrosine phosphorylation after TGF-β1 pretreatment was observed in four out of 40 AML cases (10%), although all of the AML cases responded to TGF-β1 by means of SMAD3 translocation. The reduced IL-6-mediated STAT3 tyrosine phosphorylation after pre-treatment with TGF-β1 was associated with apoptosis and coincided with the degradation of certain cellular proteins, including JAK1 and -2 and Tyk2, without affecting the ERK expression and phosphorylation. Furthermore, treatment of AML blasts with the cytostatic agent VP16, as an alternative way to induce apoptosis, resulted in a similar degree of degradation of JAK kinases and concomitant reduction of IL-6-mediated STAT3 tyrosine phosphorylation. Although degradation of JAK kinases could be rescued by incubating the cells with the pancaspase inhibitor Z-VAD-fmk, the attenuating effect of TGF-β1 treatment on the STAT3 tyrosine phosphorylation was still partly present. It was shown that in AML cells cultured in the presence of Z-VAD-fmk, TGF-β1 pretreatment resulted in a reduction of JAK1 phosphorylation upon IL-6 stimulation. Expression of SOCS1 and -3 could be ruled out as a possible cause of reduced JAK1 phosphorylation levels in the investigated AML case.

    A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis.

    Get PDF
    Contains fulltext : 178096.pdf (publisher's version ) (Open Access)Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis.1 oktober 201

    Treatment with high-dose simvastatin inhibits geranylgeranylation in AML blast cells in a subset of AML patients.

    No full text
    Item does not contain fulltextIt is currently unknown whether the in vitro effects observed with statins in acute myeloid leukemia (AML) cells, including lowering of cholesterol, inhibition of isoprenylation, and sensitization to chemotherapy, also occur in vivo. Therefore, AML mononuclear cells (MNCs) were isolated from 12 patients before and after 7 days of high-dose (7.5-15 mg/kg/day) simvastatin treatment. Parallel mouse studies were performed to have, in addition to AML cells, access to liver tissue, a major target of statins. Serum cholesterol levels were lowered by simvastatin in all patients, however, only limited changes in the messenger RNA expression of cholesterol metabolism genes were seen in patient and mouse MNCs compared to murine liver cells. Still, two out of seven patients displayed an increased in vitro chemosensitivity of their AML cells upon simvastatin treatment. Gene set enrichment analysis on microarray data of AML patient cells and Western blot analysis for the isoprenylated proteins DnaJ and Rap1 on murine and AML patient MNCs demonstrated that in vivo simvastatin treatment resulted in inhibition of geranylgeranylation in murine MNCs and in a subset of patient AML MNCs. In summary, our data demonstrate that simvastatin treatment results in chemosensitization and inhibition of geranylgeranylation in AML cells of a subset of patients.1 maart 201

    Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population.

    No full text
    Knowledge about evolution of clonal hematopoiesis, which may drive malignant progression, is crucial for clinical decision-making. We investigated the landscape of clonal evolution by error-corrected sequencing on 7,045 sequential samples from 3,359 individuals in the prospective population-based Lifelines cohort, with a special focus on cytosis and cytopenia. Spliceosome (SRSF2/U2AF1/SF3B1) and JAK2 mutated clones show highest growth rates over a median 3.6-year period, while clone sizes for DNMT3A and TP53 increase only marginally, independent of cytosis or cytopenia. Nevertheless, large differences are observed between individuals carrying the same mutation, indicative of modulation by non-mutation-related factors. Clonal expansion is not dependent on classical cancer risk factors (e.g., smoking). Risk for incident myeloid malignancy diagnosis is highest for JAK2, spliceosome, or TP53 mutations and absent for DNMT3A, and it is mostly preceded by cytosis or cytopenia. The results provide important insight into high-risk evolutionary patterns to guide monitoring of "CHIP" and "CCUS.

    Inhibition of the Transforming Growth Factor β (TGFβ) Pathway by Interleukin-1β Is Mediated through TGFβ-activated Kinase 1 Phosphorylation of SMAD3

    Get PDF
    Transforming growth factor β is the prototype of a large family of secreted factors that regulate multiple biological processes. In the immune system, TGFβ acts as an anti-inflammatory and immunosuppressive molecule, whereas the cytokine interleukin (IL)-1β is a crucial mediator of inflammatory responses and induces proinflammatory genes and acute phase proteins. Here, we present evidence for the existence of a direct inhibitory interaction between the IL-1β and TGFβ signaling cascades that is not dependent on IL-1β–induced SMAD7 expression. IL-1β and its downstream mediator TAK1 inhibit SMAD3-mediated TGFβ target gene activation, whereas SMAD3 nuclear translocation and DNA binding in response to TGFβ are not affected. IL-1β transiently induces association between TAK1 and the MAD homology 2 domain of SMAD3, resulting in SMAD3 phosphorylation. Furthermore, IL-1β alleviates the inhibitory effect of TGFβ on in vitro hematopoietic myeloid colony formation. In conclusion, our data provide evidence for the existence of a direct inhibitory effect of the IL-1β-TAK1 pathway on SMAD3-mediated TGFβ signaling, resulting in reduced TGFβ target gene activation and restored proliferation of hematopoietic progenitors
    corecore