11 research outputs found

    Specification of Actin Filament Function and Molecular Composition by Tropomyosin Isoforms

    No full text
    The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5(NM1)), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5(NM1) was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function

    Converging evidence does not support GIT1 as an ADHD risk gene

    No full text
    Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N=19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N=225), and (3) the Brain Imaging Genetics cohort (BIG, N=1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences

    Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis

    Full text link
    BACKGROUND: Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. METHODS: We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33,332 cases and 27,888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples. FINDINGS: SNPs at four loci surpassed the cutoff for genome-wide significance (p<5Ă—10(-8)) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers. INTERPRETATION: Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause. FUNDING: National Institute of Mental Health
    corecore