26 research outputs found

    Code status documentation at admission in COVID-19 patients: a descriptive cohort study

    Get PDF
    Objectives The COVID-19 pandemic pressurised healthcare with increased shortage of care. This resulted in an increase of awareness for code status documentation (ie, whether limitations to specific life-sustaining treatments are in place), both in the medical field and in public media. However, it is unknown whether the increased awareness changed the prevalence and content of code status documentation for COVID-19 patients. We aim to describe differences in code status documentation between infectious patients before the pandemic and COVID-19 patients. Setting University Medical Centre of Utrecht, a tertiary care teaching academic hospital in the Netherlands. Participants A total of 1715 patients were included, 129 in the COVID-19 cohort (a cohort of COVID-19 patients, admitted from March 2020 to June 2020) and 1586 in the pre-COVID-19 cohort (a cohort of patients with (suspected) infections admitted between September 2016 to September 2018). Primary and secondary outcome measures We described frequency of code status documentation, frequency of discussion of this code status with patient and/or family, and content of code status. Results Frequencies of code status documentation (69.8% vs 72.7%, respectively) and discussion (75.6% vs 73.3%, respectively) were similar in both cohorts. More patients in the COVID-19 cohort than in the before COVID-19 cohort had any treatment limitation as opposed to full code (40% vs 25%). Within the treatment limitations, 'no intensive care admission' (81% vs 51%) and 'no intubation' (69% vs 40%) were more frequently documented in the COVID-19 cohort. A smaller difference was seen in 'other limitation' (17% vs 9%), while 'no resuscitation' (96% vs 92%) was comparable between both periods. Conclusion We observed no difference in the frequency of code status documentation or discussion in COVID-19 patients opposed to a pre-COVID-19 cohort. However, treatment limitations were more prevalent in patients with COVID-19, especially 'no intubation' and 'no intensive care admission'.Pathophysiology, epidemiology and therapy of agein

    Radicals in the church

    No full text

    The presence of the cag pathogenicity island is associated with increased superoxide anion radical scavenging activity by Helicobacter pylori

    No full text
    Reactive oxygen species (ROS) generated by Helicobacter pylori infection have been suggested to be important factors in induction of gastric malignancies. Utilizing electron spin resonance spectrometry, H. pylori-dependent radical formation and hydroxyl- and superoxide-anion radical scavenging activity was investigated. In contrast to previous reports, we found that H. pylori does not produce ROS, but displays superoxide scavenging activity. This scavenging activity was increased in cag-positive H. pylori strains when compared to strains lacking an intact cag pathogenicity island, and was dependent on enzyme activity. We hypothesize that the increased scavenging activity of cag-positive H. pylori strains is an adaptation to the increased inflammatory response associated with the cag-positive genotype of H. pylori

    Relationship between the composition of fine dust particles in the air and lung function in school children

    No full text
    OBJECTIVE: To determine whether or not there is a relationship between the lung function of school children and the ability of fine dust particles in the air to generate radicals. DESIGN: Descriptive. METHOD: Six primary schools in locations with different traffic volumes were selected in Maastricht, the Netherlands. Air samples were taken in these schools over a period of 4 days; the concentration of fine dust was measured in the 6 pooled samples. Lung function tests were performed in children in the age of 8-13 and their parents filled out a questionnaire on the state of their children's health. RESULTS: An average of 66% of the children (184 girls and 158 boys, with an average age of 10 years (range: 8-13 years)) participated. The average FEV1 for the children from the 6 schools was not related with the total amount of fine dust particles in the air. However, a lower average FEV1 was associated with a higher radical-generating capacity in the air samples. No direct association was observed between the radical-generating capacity of the dust and the traffic intensity. CONCLUSION: There was a clear relationship between lung function and the radical-generating capacity of fine dust in the air. On the basis of these findings future guidelines could be based on chemical properties of the fine dust particles and not exclusively on the quantity of fine dust. AD - Universiteit Maastricht, Postbus 616, 6200 MD Maastricht. FAU - van Schayck, C P AU - van Schayck CP FAU - Hogervorst, J G F AU - Hogervorst JG FAU - de Kok, T M C M AU - de Kok TM FAU - Briede, J J AU - Briede JJ FAU - Wesseling, G AU - Wesseling G FAU - Kleinjans, J C S AU - Kleinjans JC LA - dut PT - Journal Article TT - Relatie tussen de samenstelling van fijn stofin de lucht en de longfunctie van schoolkinderen

    Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways

    No full text
    Arsenic (As) contamination in groundwater is responsible for numerous adverse health outcomes among millions of people. Epigenetic alterations are among the most widely studied mechanisms of As toxicity. To understand how As exposure alters gene expression through epigenetic modifications, a systematic genome-wide study was designed to address the impact of multiple important single nucleotide polymorphisms (SNPs) related to As exposure on the methylome of drinking water As-exposed rural subjects from Pakistan. Urinary As levels were used to stratify subjects into low, medium and high exposure groups. Genome-wide DNA methylation was investigated using MeDIP in combination with NimbleGen 2.1 M Deluxe Promotor arrays. Transcriptome levels were measured using Agilent 8 x 60 K expression arrays. Genotyping of selected SNPs (As3MT, DNMT1a, ERCC2, EGFR and MTHFR) was measured and an integrated genetic risk factor for each respondent was calculated by assigning a specific value to the measured genotypes based on known risk allele numbers. To select a representative model related to As exposure we compared 9 linear mixed models comprising of model 1 (including the genetic risk factor), model 2 (without the genetic risk factor) and models with individual SNPs incorporated into the methylome data. Pathway analysis was performed using ConsensusPathDB. Model 1 comprising the integrated genetic risk factor disclosed biochemical pathways including muscle contraction, cardio-vascular diseases, ATR signaling, GPCR signaling, methionine metabolism and chromatin modification in association with hypoand hyper-methylated gene targets. A unique pathway (direct P53 effector) was found associated with the individual DNMT1a polymorphism due to hyper-methylation of CSE1L and TRRAP. Most importantly, we provide here the first evidence of As-associated DNA methylation in relation with gene expression of ATR, ATF7IP, TPM3, UBE2J2. We report the first evidence that integrating SNPs data with methylome data generates a more representative epigenome profile and discloses a better insight in disease risks of As-exposed individuals

    Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects

    No full text
    Several epidemiological studies have shown that in the human population ambient particulate matter (PM) is associated with adverse health effects. Little is known, however, about the relative effects of aerosol constituents. Since 2002, diurnal samples of ambient PM2.5 were analysed by automated methods for the quantification of particle-associated organic compounds (POC). Data on chemical composition have been investigated in epidemiological and biological effect studies. As a result of these studies, the associations found between PAH concentration and symptoms of myocardial infarction survivors suggest a major influence of combustion sources on cardiovascular health effects. The correlations found between formation of reactive oxygen species and the presence of specific organic compounds suggests an important influence of biomass combustion particles in PM2.5-associated oxidative stress

    Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways

    No full text
    Arsenic (As) contamination in groundwater is responsible for numerous adverse health outcomes among millions of people. Epigenetic alterations are among the most widely studied mechanisms of As toxicity. To understand how As exposure alters gene expression through epigenetic modifications, a systematic genome-wide study was designed to address the impact of multiple important single nucleotide polymorphisms (SNPs) related to As exposure on the methylome of drinking water As-exposed rural subjects from Pakistan. Urinary As levels were used to stratify subjects into low, medium and high exposure groups. Genome-wide DNA methylation was investigated using MeDIP in combination with NimbleGen 2.1 M Deluxe Promotor arrays. Transcriptome levels were measured using Agilent 8 x 60 K expression arrays. Genotyping of selected SNPs (As3MT, DNMT1a, ERCC2, EGFR and MTHFR) was measured and an integrated genetic risk factor for each respondent was calculated by assigning a specific value to the measured genotypes based on known risk allele numbers. To select a representative model related to As exposure we compared 9 linear mixed models comprising of model 1 (including the genetic risk factor), model 2 (without the genetic risk factor) and models with individual SNPs incorporated into the methylome data. Pathway analysis was performed using ConsensusPathDB. Model 1 comprising the integrated genetic risk factor disclosed biochemical pathways including muscle contraction, cardio-vascular diseases, ATR signaling, GPCR signaling, methionine metabolism and chromatin modification in association with hypoand hyper-methylated gene targets. A unique pathway (direct P53 effector) was found associated with the individual DNMT1a polymorphism due to hyper-methylation of CSE1L and TRRAP. Most importantly, we provide here the first evidence of As-associated DNA methylation in relation with gene expression of ATR, ATF7IP, TPM3, UBE2J2. We report the first evidence that integrating SNPs data with methylome data generates a more representative epigenome profile and discloses a better insight in disease risks of As-exposed individuals

    Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter

    No full text
    PM2.5 filter samples were collected in summer 2005 at an urban background site in Augsburg, Germany. They were analyzed for polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives (O-PAH) using gas chromatography/mass spectrometry. Oxygen free radical formation (reactive oxygen substances, ROS) was measured by electron spin resonance (ESR) spectroscopy after addition of spin trapping agent directly on the same filters. The concentrations of ambient, high-boiling PAH and O-PAH were highly correlated to ROS formation, even better than to particulate mass or number concentration. Correlations were most pronounced for some polycyclic aromatic monoketones (e.g., benz[de]anthracene-7-one), which are not yet reported in literature to be redox cycling active. The association found between ESR measurements and the presence of specific semivolatile organic compounds suggests an important influence of wood burning in PM2.5-associated ROS formation. These results indicate that further research on the relationship between radical formation and presence of specific O-PAH and semivolatile organic compounds (SVOC) are likely to provide a better understanding of the relationship between the source-dependent chemical composition of PM and the toxicological risks associated with PM exposure
    corecore