11 research outputs found

    Energetics, forces, and quantized conductance in jellium modeled metallic nanowires

    Full text link
    Energetics and quantized conductance in jellium modeled nanowires are investigated using the local density functional based shell correction method, extending our previous study of uniform in shape wires [C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable shaped constricted region. The energetics of the wire (sodium) as a function of the length of the volume conserving, adiabatically shaped constriction leads to formation of self selecting magic wire configurations. The variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the narrowmost part of the constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure

    The role of structural evolution on the quantum conductance behavior of gold nanowires during stretching

    Full text link
    Gold nanowires generated by mechanical stretching have been shown to adopt only three kinds of configurations where their atomic arrangements adjust such that either the [100], [111] or [110] zone axes lie parallel to the elongation direction. We have analyzed the relationship between structural rearrangements and electronic transport behavior during the elongation of Au nanowires for each of the three possibilities. We have used two independent experiments to tackle this problem, high resolution transmission high resolution electron microscopy to observe the atomic structure and a mechanically controlled break junction to measure the transport properties. We have estimated the conductance of nanowires using a theoretical method based on the extended H\"uckel theory that takes into account the atom species and their positions. Aided by these calculations, we have consistently connected both sets of experimental results and modeled the evolution process of gold nanowires whose conductance lies within the first and third conductance quanta. We have also presented evidence that carbon acts as a contaminant, lowering the conductance of one-atom-thick wires.Comment: 10 page

    On the statistical significance of the conductance quantization

    Full text link
    Recent experiments on atomic-scale metallic contacts have shown that the quantization of the conductance appears clearly only after the average of the experimental results. Motivated by these results we have analyzed a simplified model system in which a narrow neck is randomly coupled to wide ideal leads, both in absence and presence of time reversal invariance. Based on Random Matrix Theory we study analytically the probability distribution for the conductance of such system. As the width of the leads increases the distribution for the conductance becomes sharply peaked close to an integer multiple of the quantum of conductance. Our results suggest a possible statistical origin of conductance quantization in atomic-scale metallic contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR

    Structure of aluminum atomic chains

    Get PDF
    First-principles density functional calculations reveal that aluminum can form planar chains in zigzag and ladder structures. The most stable one has equilateral triangular geometry with four nearest neighbors; the other stable zigzag structure has wide bond angle and allows for two nearest neighbors. An intermediary structure has the ladder geometry and is formed by two strands. All these planar geometries are, however, more favored energetically than the linear chain. We found that by going from bulk to a chain the character of bonding changes and acquires directionality. The conductance of zigzag and linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures, modified figure1, 1 tabl
    corecore