43 research outputs found

    Characteristics of improvements in balance control using vibro-tactile biofeedback of trunk sway for multiple sclerosis patients

    Get PDF
    Background and aims: Previously, we determined that training with vibrotactile feedback (VTfb) of trunk sway improves MS patients’ balance impairment. Here, we posed 5 questions: 1) How many weeks of VTfb training are required to obtain the best short-term carry over effect (CoE) with VTfb? 2) How long does the CoE last once VTfb training terminates? 3) Is the benefit similar for stance and gait? 4) Is position or velocity based VTfb more effective in reducing trunk sway? 5) Do patients’ subjective assessments of balance control improve? Methods: Balance control of 16 MS patients was measured with gyroscopes at the lower trunk. The gyroscopes drove directionally active VTfb in a head-band. Patients trained twice per week with VTfb for 4 weeks to determine when balance control with and without VTfb stopped improving. Thereafter, weekly assessments without VTfb over 4 weeks and at 6 months determined when CoEs ended. Results: A 20% improvement in balance to normal levels occurred with VTfb. Short term CoEs improved from 15 to 20% (p ≤0.001). Medium term (1–4 weeks) CoEs were constant at 19% (p ≤0.001). At 6 months improvement was not significant, 9%. Most improvement was for lateral sway. Equal improvement occurred when angle position or velocity drove VTfb. Subjectively, balance improvements peaked after 3 weeks of training (32%, p ≤0.05). Conclusions: 3–4 weeks VTfb training yields clinically relevant sway reductions and subjective improvements for MS patients during stance and gait. The CoEs lasted at least 1 month. Velocity-based VTfb was equally effective as position-based VTf

    Clinical posturography

    No full text

    Influence of perturbation velocity on balance control in Parkinson's disease

    Get PDF
    Contains fulltext : 138303.pdf (publisher's version ) (Open Access)Underlying somatosensory processing deficits of joint rotation velocities may cause patients with Parkinson's disease (PD) to be more unstable for fast rather than slow balance perturbations. Such deficits could lead to reduced proprioceptive amplitude feedback triggered by perturbations, and thereby to smaller or delayed stabilizing postural responses. For this reason, we investigated whether support surface perturbation velocity affects balance reactions in PD patients. We examined postural responses of seven PD patients (OFF medication) and eight age-matched controls following backward rotations of a support-surface platform. Rotations occurred at three different speeds: fast (60 deg/s), medium (30 deg/s) or slow (3.8 deg/s), presented in random order. Each subject completed the protocol under eyes open and closed conditions. Full body kinematics, ankle torques and the number of near-falls were recorded. Patients were significantly more unstable than controls following fast perturbations (26% larger displacements of the body's centre of mass; P<0.01), but not following slow perturbations. Also, more near-falls occurred in patients for fast rotations. Balance correcting ankle torques were weaker for patients than controls on the most affected side, but were stronger than controls for the least affected side. These differences were present both with eyes open and eyes closed (P<0.01). Fast support surface rotations caused greater instability and discriminated Parkinson patients better from controls than slow rotations. Although ankle torques on the most affected side were weaker, patients partially compensated for this by generating larger than normal stabilizing torques about the ankle joint on the least affected side. Without this compensation, instability may have been greater

    Trunk sway measurements during stance and gait tasks in Parkinson's disease.

    No full text
    Contains fulltext : 49237.pdf (publisher's version ) (Closed access)To achieve a unified assessment of postural instability in Parkinson's disease (PD) over a range of clinical stance and gait tasks, which may provide an insight into a tendency to fall, we measured trunk sway in the anterior-posterior and medial-lateral directions in freely moving PD patients and age-matched controls. We also measured task duration as time to complete the task or time to loss of balance. Patients had larger amplitudes of trunk sway velocities for stance tasks (e.g. mean pitch velocity when standing on two-legs eyes closed equalled 19.1 +/- 6.4 for PD patients on medication versus 4.8 +/- 0.3 degrees/s for controls, p = 0.0003) and for an expected (following prior warning) retropulsion test (mean roll angle equalled 4.3 +/- 0.5 degrees for PD patients versus 2.2 +/- 0.6 degrees for controls, p = 0.0003) than controls. Patients were more likely to fall earlier for stance tasks, and took longer to complete gait tasks (e.g. walking 3 m eyes closed, mean time 6.8 +/- 0.6 sees versus 4.9 +/- 0.1 sees, p = 0.0001). These differences between patients and controls were, in most cases, independent of medication. Based on these results we defined a simple test battery of stance and gait tasks that could discriminate between PD patients who had recent falls and controls. These results indicate that trunk sway measures recorded during stance and gait tasks provide useful information on balance deficits leading to falls in PD patients

    Differential diagnosis of proprioceptive and vestibular deficits using dynamic support-surface posturography.

    No full text
    The objective of this study was to evaluate how effective dynamic support-surface posturography could be as a diagnostic tool in patients with balance disorders (proprioceptive or vestibular deficits). Specifically, we studied whether measures of trunk control and simple toe-up rotational perturbations, selected using statistical techniques, could provide a better diagnostic yield than either the analysis of lower-body movements or use of a "nulled" ankle input paradigm. The test subjects were 15 control subjects, five patients with bilateral peripheral vestibular loss (VL) and five patients with selective bilateral, lower-leg proprioceptive loss (PL). Amplitudes and onset latencies of bursts of EMG activity in upper and lower-leg muscles, paraspinals and trapezius muscles, concurrent changes in ankle torque, and peak amplitudes of upper-leg, lower-leg, and trunk angular-velocities were measured. Stimuli included three different types of sudden movements of the support surface, a "nulled" ankle input paradigm, a simple toe-up rotation paradigm, and a combined toe-up rotation and backwards translation of the support surface. All stimuli were tested under eyes-open and eyes-closed conditions. For each type of movement and condition the diagnostic classification accuracy (i.e. the overall sensitivity and specificity) was calculated based on those posturography measures providing the highest diagnostic separation between the three populations. Both patient groups showed increased trunk sway, changed support-surface reaction forces and muscle amplitudes compared with controls for toe-up and "nulled" test conditions. Measures providing the greatest diagnostic utility were the amplitude of trunk-angular velocity (increased in VL subjects, less so in PL), the amplitude of balance-correcting paraspinal responses (increased in VL subjects, decreased in PL subjects), the amplitude of trapezius stabilising responses (increased in both patient groups) for simple toe-up rotations under eyes-closed conditions. We conclude, that diagnosis of balance disorders using dynamic posturography is best achieved using measures of trunk control following pure toe-up rotational perturbations tested under eyes-closed conditions

    Is lower leg proprioception essential for triggering human postural responses?

    No full text

    The influence of artificially increased hip and trunk stiffness on balance control in man.

    No full text
    Contains fulltext : 59354.pdf (publisher's version ) (Closed access)Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20-34 years of age) while they wore one of two types of corset or no corset at all. One type, the "half-corset", only increased hip stiffness, and the other, the "full-corset", increased stiffness of the hips and trunk. The perturbations consisted of combined roll and pitch rotations of the support surface (7.5 deg, 60 deg/s) in one of six different directions. Outcome measures were biomechanical responses of the legs, trunk, arms and head, and electromyographic (EMG) responses from leg, trunk, and upper arm muscles. With the full-corset, a decrease in forward stabilising trunk pitch rotation compared to the no-corset condition occurred for backward pitch tilts of the support surface. In contrast, the half-corset condition yielded increased forward trunk motion. Trunk backward pitch motion after forwards support-surface perturbations was the same for all corset conditions. Ankle torques and lower leg angle changes in the pitch direction were decreased for both corset conditions for forward pitch tilts of the support-surface but unaltered for backward tilts. Changes in trunk roll motion with increased stiffness were profound. After onset of a roll support-surface perturbation, the trunk rolled in the opposite direction to the support-surface tilt for the no-corset and half-corset conditions, but in the same direction as the tilt for the full-corset condition. Initial head roll angular accelerations (at 100 ms) were larger for the full-corset condition but in the same direction (opposite platform tilt) for all conditions. Arm roll movements were initially in the same direction as trunk movements, and were followed by large compensatory arm movements only for the full-corset condition. Leg muscle (soleus, peroneus longus, but not tibialis anterior) balance-correcting responses were reduced for roll and pitch tilts under both corset conditions. Responses in paraspinals were also reduced. These results indicate that young healthy normals cannot rapidly modify movement strategies sufficiently to account for changes in link flexibility following increases in hip and trunk stiffness. The changes in leg and trunk muscle responses failed to achieve a normal roll or pitch trunk end position at 700 ms (except for forward tilt rotations), even though head accelerations and trunk joint proprioception seemed to provide information on changed trunk movement profiles over the first 300 ms following the perturbation. The major adaptation to stiffness involved increased use of arm movements to regain stability. The major differences in trunk motion for the no-corset, half-corset and full-corset conditions support the concept of a multi-link pendulum with different control dynamics in the pitch and roll planes as a model of human stance. Stiffening of the hip and trunk increases the likelihood of a loss of balance laterally and/or backwards. Thus, these results may have implications for the elderly and others, with and without disease states, who stiffen for a variety of reasons
    corecore