1,164 research outputs found

    Kaluza-Klein Formalism of General Spacetimes

    Get PDF
    I describe the Kaluza-Klein approach to general relativity of 4-dimensional spacetimes. This approach is based on the (2,2)-fibration of a generic 4-dimensional spacetime, which is viewed as a local product of a (1+1)-dimensional base manifold and a 2-dimensional fibre space. It is shown that the metric coefficients can be decomposed into sets of fields, which transform as a tensor field, gauge fields, and scalar fields with respect to the infinite dimensional group of the diffeomorphisms of the 2-dimensional fibre space. I discuss a few applications of this formalism.Comment: RevTex, no figure

    Inflation from Extra Dimensions

    Get PDF
    The radial mode of n extra compact dimensions (the radion, b) can cause inflation in theories where the fundamental gravity scale, M, is smaller than the Planck scale M_P. For radion potentials V(b) with a simple polynomial form, to get the observed density perturbations, the energy scale of V(b) must greatly exceed M ~ 1 TeV: V(b)^{1/4} = M_v ~ 10^{-4} M_P. This gives a large radion mass and reheat temperature ~ 10^9 GeV, thus avoiding the moduli problem. Such a value of M_v can be consistent with the classical treatment if the new dimensions started sufficiently small. A new possibility is that b approaches its stable value from above during inflation. The same conclusions about M_v may hold even if inflation is driven by matter fields rather than by the radion.Comment: 4 pages, 4 figures, uses epsf.te

    Two-Dimensional Wigner Crystal in Anisotropic Semiconductor

    Full text link
    We investigate the effect of mass anisotropy on the Wigner crystallization transition in a two-dimensional (2D) electron gas. The static and dynamical properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais lattices in the presence of anisotropic mass, as may be obtainable in Si MOSFETs with (110) surface. By studying the stability of all possible lattices, we find significant change in the crystal structure and melting density of the electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure

    Melting of Charge/Orbital Ordered States in Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3: Temperature and Magnetic Field Dependent Optical Studies

    Full text link
    We investigated the temperature (T=T= 15 \sim 290 K) and the magnetic field (H=H= 0 \sim 17 T) dependent optical conductivity spectra of a charge/orbital ordered manganite, Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3. With variation of TT and HH, large spectral weight changes were observed up to 4.0 eV. These spectral weight changes could be explained using the polaron picture. Interestingly, our results suggested that some local ordered state might remain above the charge ordering temperature, and that the charge/orbital melted state at a high magnetic field (i.e. at H=H= 17 T and % T= 4.2 K) should be a three dimensional ferromagnetic metal. We also investigated the first order phase transition from the charge/orbital ordered state to ferromagnetic metallic state using the TT- and HH% -dependent dielectric constants ϵ1\epsilon_1. In the charge/orbital ordered insulating state, ϵ1\epsilon_1 was positive and dϵ1/dω0d\epsilon_1/d\omega \approx 0. With increasing TT and HH, ϵ1\epsilon_1 was increased up to the insulator-metal phase boundaries. And then, ϵ1\epsilon_1 abruptly changed into negative and dϵ1/dω>0d\epsilon_1/d\omega >0, which was consistent with typical responses of a metal. Through the analysis of ϵ1% \epsilon_1 using an effective medium approximation, we found that the melting of charge/orbital ordered states should occur through the percolation of ferromagnetic metal domains.Comment: submitted to Phys. Rev.

    Experimental and numerical investigation on cross flow in the PMR200 core

    Get PDF
    Papers presented to the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 20-23 July 2015.The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear grade graphite. However, the shape of graphite blocks could be easily changed by neutron damage during the reactor operation and the shape change can make the gaps between the blocks inducing bypass flow. Two types of gap shape should be considered. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively. The cross gap complicates flow field in reactor core by connecting coolant channel and bypass gap and it could lead to loss of effective coolant flow in fuel blocks. In this paper, cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and the experiment was carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results. In order to apply the CFD code to the cross flow phenomena, the prediction capability of the CFD code was verified. Good agreement between experimental results and CFD predictions was observed and the characteristics of the cross flow was discussed in detail.This work was supported by a Basic Atomic Energy Research Institute (BAERI) grant funded by the Korean government Ministry of Education and Science Technology (MEST) (NRF-2010-0018759)am201

    On the gauge and BRST invariance of the chiral QED with Faddeevian anomaly

    Full text link
    Chiral Schwinger model with the Faddeevian anomaly is considered. It is found that imposing a chiral constraint this model can be expressed in terms of chiral boson. The model when expressed in terms of chiral boson remains anomalous and the Gauss law of which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST quantization is possible. The Wess-Zumino term corresponding to this theory appears automatically during the process of quantization. A gauge invariant reformulation of this model is also constructed. Unlike the former one gauge invariance is done here without any extension of phase space. This gauge invariant version maps onto the vector Schwinger model.The gauge invariant version of the chiral Schwinger model for a=2a=2 has a massive field with identical mass however gauge invariant version obtained here does not map on to that.Comment: 11 pages latex, no figures, A little change in Title and abstrac

    Molecular and functional expression of anion exchangers in cultured normal human nasal epithelial cells

    Get PDF
    AIMS: Anions have an important role in the regulation of airway surface liquid (ASL) volume, viscosity and pH. However, functional localization and regulation of anion exchangers (AEs) have not been clearly described. The aim of this study was to investigate the regulation of AE mRNA expression level in accordance with mucociliary differentiation and the functional expression of AEs cultured normal human nasal epithelial (NHNE) cells. METHODS: Nasal mucosal specimens from three patients are obtained and serially cultured cells are subjected to morphological examinations, RT-PCR, Western blot analysis and immunocytochemistry. AE activity is assessed by pHi measurements. RESULTS: Expression of ciliated cells on the apical membrane and expression of MUC5AC, a marker of mucous differentiation, increased with time. AE2 and SLC26A4 mRNA expression decreased as mucociliary differentiation progressed, and AE4, SLC26A7 and SLC26A8 mRNA expression increased on the 14th and 28th day after confluence. Accordingly, AE4 protein expression also progressively increased. AE activity in 100 mM K(+) buffer solutions was nearly twofold higher than that in 5 mM K(+) buffer solutions. Moreover, only luminal AE activity increased about fourfold over the control in the presence of 5 microM forskolin. In the presence of 100 microM adenosine-5'-triphosphate (ATP) which evokes intracellular calcium signalling through activation of purinergic receptors, only luminal AE activity was again significantly increased. On the other hand, 500 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of most SLC4 and SLC26AE isoforms, nearly abolished AE activity in both luminal and basolateral membranes. We found that AE activity was affected by intracellular cAMP and calcium signalling in the luminal membrane and was DIDS-sensitive in both membranes of cultured NHNE cells. CONCLUSION: Our findings through molecular and functional studies using cultured NHNE cells suggest that AEs may have an important role in the regulation of ASL.ope
    corecore