67 research outputs found

    Characterisation of a three-dimensional Brownian motor in optical lattices

    Full text link
    We present here a detailed study of the behaviour of a three dimensional Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and numerical simulations of a Brownian particle. The potentials used are spatially and temporally symmetric, but combined spatiotemporal symmetry is broken by phase shifts and asymmetric transfer rates between potentials. The diffusion of atoms in the optical lattices is rectified and controlled both in direction and speed along three dimensions. We explore a large range of experimental parameters, where irradiances and detunings of the optical lattice lights are varied within the dissipative regime. Induced drift velocities in the order of one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure

    Electronic transport in films of colloidal CdSe nanocrystals

    Full text link
    We present results for electronic transport measurements on large three-dimensional arrays of CdSe nanocrystals. In response to a step in the applied voltage, we observe a power-law decay of the current over five orders of magnitude in time. Furthermore, we observe no steady-state dark current for fields up to 10^6 V/cm and times as long as 2x10^4 seconds. Although the power-law form of the decay is quite general, there are quantitative variations with temperature, applied field, sample history, and the material parameters of the array. Despite evidence that the charge injected into the film during the measurement causes the decay of current, we find field-scaling of the current at all times. The observation of extremely long-lived current transients suggests the importance of long-range Coulomb interactions between charges on different nanocrystals.Comment: 11 pages, 10 figure

    Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

    Full text link
    For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic

    Transport of charged particles by adjusting rf voltage amplitudes

    Full text link
    We propose a planar architecture for scalable quantum information processing (QIP) that includes X-junctions through which particles can move without micromotion. This is achieved by adjusting radio frequency (rf) amplitudes to move an rf null along the legs of the junction. We provide a proof-of-principle by transporting dust particles in three dimensions via adjustable rf potentials in a 3D trap. For the proposed planar architecture, we use regularization techniques to obtain amplitude settings that guarantee smooth transport through the X-junction.Comment: 16 pages, 10 figure

    Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets

    Full text link
    The electrical transport properties of amorphous Bi films prepared by sequential quench deposition have been studied in situ. A superconductor-insulator (S-I) transition was observed as the film was made increasingly thicker, consistent with previous studies. Unexpected behavior was found at the initial stage of film growth, a regime not explored in detail prior to the present work. As the temperature was lowered, a positive temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance reaching a minimum before the dR/dT became negative again. This behavior was accompanied by a non-linear and asymmetric I-V characteristic. As the film became thicker, conventional variable-range hopping (VRH) was recovered. We attribute the observed crossover in the electrical transport properties to an amorphous to granular structural transition. The positive dR/dT found in the amorphous phase of Bi formed at the initial stage of film growth was qualitatively explained by the formation of metallic droplets within the electron glass.Comment: 7 pages, 6 figure

    Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    Full text link
    The size-dependent decoherence of the exciton states resulting from the spontaneous emission is investigated in a semiconductor spherical microcrystallite under condition aBâ‰ȘR0≀λa_{B}\ll R_{0}\leq\lambda. In general, the larger size of the microcrystallite corresponds to the shorter coherence time. If the initial state is a superposition of two different excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent states, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.Comment: 4 pages, two figure

    Quantum control of 88^{88}Sr+^+ in a miniature linear Paul trap

    Full text link
    We report on the construction and characterization of an apparatus for quantum information experiments using 88^{88}Sr+^+ ions. A miniature linear radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1 MHz in all directions are obtained with 50 V on the trap end-caps and less than 1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the S1/2S_{1/2} electronic ground-state of the ion. We constructed all the necessary laser sources for laser cooling and full coherent manipulation of the ions' external and internal states. Oscillating magnetic fields are used for coherent spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are demonstrated. Following resolved sideband cooling the average axial vibrational quanta of a single trapped ion is nˉ=0.05\bar n=0.05 and a heating rate of nˉ˙=0.016\dot{\bar n}=0.016 ms−1^{-1} is measured.Comment: 8 pages,9 figure

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB≫1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure
    • 

    corecore