16 research outputs found

    Classification of K3-surfaces with involution and maximal symplectic symmetry

    Full text link
    K3-surfaces with antisymplectic involution and compatible symplectic actions of finite groups are considered. In this situation actions of large finite groups of symplectic transformations are shown to arise via double covers of Del Pezzo surfaces. A complete classification of K3-surfaces with maximal symplectic symmetry is obtained.Comment: 26 pages; final publication available at http://www.springerlink.co

    Fully supersymmetric CP violations in the kaon system

    Get PDF
    We show that, on the contrary to the usual claims, fully supersymmetric CP violations in the kaon system are possible through the gluino mediated flavor changing interactions. Both ϵK\epsilon_K and Re(ϵ′/ϵK){\rm Re} (\epsilon' / \epsilon_K) can be accommodated for relatively large tan⁡β\tan\beta without any fine tunings or contradictions to the FCNC and EDM constraints.Comment: Contribution to the Proceedings of ICHEP2000, Osaka, 200

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ
    corecore