62 research outputs found

    Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors.

    Get PDF
    Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration

    The comparative responsiveness of Hospital Universitario Princesa Index and other composite indices for assessing rheumatoid arthritis activity

    Get PDF
    Objective To evaluate the responsiveness in terms of correlation of the Hospital Universitario La Princesa Index (HUPI) comparatively to the traditional composite indices used to assess disease activity in rheumatoid arthritis (RA), and to compare the performance of HUPI-based response criteria with that of the EULAR response criteria. Methods Secondary data analysis from the following studies: ACT-RAY (clinical trial), PROAR (early RA cohort) and EMECAR (pre-biologic era long term RA cohort). Responsiveness was evaluated by: 1) comparing change from baseline (Delta) of HUPI with Delta in other scores by calculating correlation coefficients; 2) calculating standardised effect sizes. The accuracy of response by HUPI and by EULAR criteria was analyzed using linear regressions in which the dependent variable was change in global assessment by physician (Delta GDA-Phy). Results Delta HUPI correlation with change in all other indices ranged from 0.387 to 0.791); HUPI's standardized effect size was larger than those from the other indices in each database used. In ACT-RAY, depending on visit, between 65 and 80% of patients were equally classified by HUPI and EULAR response criteria. However, HUPI criteria were slightly more stringent, with higher percentage of patients classified as non-responder, especially at early visits. HUPI response criteria showed a slightly higher accuracy than EULAR response criteria when using Delta GDA-Phy as gold standard. Conclusion HUPI shows good responsiveness in terms of correlation in each studied scenario (clinical trial, early RA cohort, and established RA cohort). Response criteria by HUPI seem more stringent than EULAR''s

    Sufficient condition for velocity-space stability of the alpha particle distribution in a tokamak reactor

    No full text
    A condition is derived for the velocity-space distribution of suprathermal alpha particles to be monotonically decreasing with energy - and hence stable to homogeneous plasma instabilities - during the heating phase of a tokamak reactor. This stability condition is easily satisfied for presently envisaged neutral injection heating of reactors, but may be violated in strong heating of smaller plasmas or during fast compressional heating

    A large flowrate electroosmotic pump with micron pores

    No full text
    This paper presents a description of the design, fabrication, and characterization of a novel, high flowrate electroosmotic pump designed for microcooling applications. The prototype pumps demonstrated a flowrate of 7 ml/min for 200 V applied potential that is suitable for two-phase heat exchangers with a capacity approaching 100 W. This pump uses electroosimotic flow (EOF) to drive the flow and is compact with no moving parts. The pump structure is produced by chemically treating and further sintering an ultrafine glass frit (filter). The frits we use are porous cylinders 30 mm in diameter and 3 mm (varying from 1.5 to 3 mm) thick and provide the high wetted-surface-to-volume ratio required to generate pressures exceeding 2 atm. Both deionized (DI) water and buffered aqueous solutions have been used as working fluids. Experiments have been conducted to characterize the pump performance and investigate its physical properties such as the structure porosity, tortuosity, effective pore size, finite double layer effects, and the dependence of zeta potential on ionic conductivity of the working solution

    Porous glass electroosmotic pumps: design and experiments

    No full text
    An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system. © 2003 Elsevier Inc. All rights reserved
    corecore