141 research outputs found

    Low- And medium-spin negative-parity bands in the Os 187 nucleus

    Get PDF
    Low- and medium-spin negative-parity bands of Os187 have been studied using the AFRican Omnipurpose Detector for Innovative Techniques and Experiments (AFRODITE) array, following the W186(He4,3n)Os187 reaction at a beam energy of 37 MeV. In the current work, all the previously known bands have been significantly extended and three new bands have been added to the level scheme. The angular distribution ratio (RAD) and polarization measurements have been used to assign spin and parity to the observed new levels. The configurations of some of the bands have been modified. The observed bands are interpreted within the cranked shell model (CSM) and cranked Nilsson-Strutinsky-Bogoliubov (CNSB) formalism. Comparison with experimental data shows good agreements. Systematic comparison with the neighboring Os185 isotope is also discussed

    Superdeformed band with a unique decay pattern: possible evidence for octupole vibration in 190Hg

    Get PDF
    An excited superdeformed (SD) band has been observed in 190Hg which decays to the lowest-energy (yrast) SD band rather than to the less deformed states as observed in most known SD bands in the A ∼ 150 and A ∼ 190 regions. The most plausible interpretation of this very unusual decay pattern associates this band with a collective structure built on an octupole-vibrational phonon in the SD well

    Rotational band structures in N=89 153Gd

    Get PDF
    The reactions 152Sm(α,3n) at 37 MeV and 124Sn(36S,α3n) at 165 MeV were used to produce high-spin states in the transitional rare-earth nucleus 153Gd. Significant extensions in angular momentum and excitation energy with respect to earlier work were achieved and several new rotational sequences were observed. The rotational behavior of 153Gd is described in terms of quasiparticle assignments and the observed alignment properties are analyzed within the framework of the cranked shell model. Detailed comparisons with other N=89 nuclei are presented. These have led to corrections to the 157Er level scheme

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Spin ∼ 60 ℏ in 156Dy: Competition between collective and terminating structures at very high-spin

    Get PDF
    The highest-spin discrete states (I ∼ 60 ℏ and Ex ∼ 30 MeV) in normal deformed nuclei have been observed in the rare-earth isotope 156Dy using the 124Sn(36S,4n) reaction in conjunction with the GAMMASPHERE spectrometer. The positive parity yrast sequence appears to evolve smoothly from a prolate (collective) towards an oblate (non-collective) shape, in contrast to the sudden shape change observed in the isotone 158Er. Terminating states are identified in the negative parity sequences at Iπ = 52- and 53- and specific multi-particle-hole configurations are assigned by comparison with cranked Nilsson-Strutinsky calculations. An order of magnitude increase in the interaction strength between close lying high-spin weakly collective structures is determined compared with that found in the lower-spin strongly collective domain. These results give valuable insight into the interplay between collective and terminating structures, and their competition for yrast status in the 40 - 60 ℏ spin range

    Octupole correlations in the structure of O2 bands in the N=88 nuclei150Sm Gd

    Get PDF
    Knowledge of the exact microscopic structure of the 01 + ground state and first excited 02 + state in 150Sm is required to understand the branching of double β decay to these states from 150Nd. The detailed spectroscopy of 150Sm and 152Gd has been studied using (α,xn) reactions and the γ -ray arrays AFRODITE and JUROGAM II. Consistently strong E1 transitions are observed between the excited Kπ = 02 + bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the first excited Kπ = 02 + band and also in terms of the “tidal wave” model of Frauendorf.Web of Scienc

    DSAM lifetime measurements for the chiral pair in 194Tl

    Get PDF
    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of 194Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario

    Linear polarization measurement of interband transitions in superdeformed (190)Hg: model-independent evidence for octupole vibrational structures

    Get PDF
    The linear polarization of γ rays between excited and yrast superdeformed (SD) states in 190Hg was measured using the four-element CLOVER detectors of the EUROBALL IV γ-ray spectrometer. This measurement shows in a model-independent way that the interband transitions which compete with the highly collective in-band quadrupole transitions are largely enhanced electric dipoles. Not only do these results represent the first measurement of the multipolarity of transitions between different SD states, but they also provide strong evidence for the interpretation of the structures in the SD minimum of the A∼190 region in terms of octupole excitations.A. Korichi, A. N. Wilson, F. Hannachi, A. Lopez-Martens, M. Rejmund, C. Schück, Ch. Vieu, G. Chmel, A. Görgen, H. Hübel, D. Rossbach, S. Schönwasser, M. Bergström, B. M. Nyakó, J. Timár, D. Bazzacco, S. Lunardi, C. Rossi-Alvarez, P. Bednarczyk, N. Kintz, S. Naguleswaran, A. Astier, D. M. Cullen, J. F. Sharpey-Schafer, T. Lauritsen, and R. Wadswort
    corecore