26 research outputs found

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    Hormonal changes accompanying sexual maturation in captive milkfish (Chanos chanos Forsskal)

    No full text
    Steroid hormone profiles accompanying sexual maturation in captive milkfish are described. There were no significant differences in levels of serum estradiol 17-β (E2) and testosterone (T) between immature male and female fish. Mean E2 levels rose from 0.54±0.11 ng/ml in immature females (Stage 1) to 4.53±1.16 ng/ml in vitellogenic females (Stage 5), while T levels increased from 2.06±0.28 ng/ml to 38.4±9.26 ng/ml. E2 and T levels were positively correlated to GSI and oocyte diameter. In males, serum T levels increased from 2.5±0.40 ng/ml in immature males to 27.73±5.02 ng/ml in spermiating males. A significantly higher T level was found in males with thick and scantly milt (spermiation index, SPI, 2) compared to males with scanty milt (SPI, 1) or males with copious, fluid milt (SPI, 3). Serum levels of E2 and T, and the GSI in females rose significantly during the breeding season (April–June 1983). The levels of both steroids dropped below 1 ng/ml in spent females sampled in succeeding months. In immature males, T levels ranged from 1.11 ng/ml to 2.78 ng/ml and rose significantly to 21.52±8.38 ng/ml during the breeding season when GSI peaked. Serum T levels dropped to around 10 ng/ml in the succeeding months when only spent or regressed males were sampled

    Leaf and floral heating in cold climates: do sub-Antarctic megaherbs resemble tropical alpine giants?

    No full text
    High latitude and altitude floras are characterized by low-statured, small, wind-pollinated plants, which mainly reproduce by self-pollination or asexual reproduction. However, at odds with this are some sub-Antarctic islands that have plant species with giant growth forms and large, brightly coloured flowers which require insect visitation for pollination. The size, colour and shape of the inflorescences and leaves of these megaherbs suggest thermal benefits similar to giant tropical alpine plants of equatorial Africa, South America and Hawaii. We evaluated whether heating occurs in sub-Antarctic megaherbs, and to what extent it is related to environmental variables. We measured leaf and inflorescence temperature in six sub-Antarctic megaherb species on Campbell Island, latitude 52.3°S, New Zealand Biological Region. Using thermal imaging techniques, in combination with measurement of solar radiation, ambient air temperature, wind speed, wind chill and humidity, we assessed environmental influences on leaf and floral heating. We found that leaf and inflorescence temperatures of all megaherbs were higher than simultaneously measured ambient temperatures. Greatest heating was seen in Pleurophyllum speciosum, with observed leaves 9°C higher, and inflorescences nearly 11°C higher, than ambient temperature. Heating was highly correlated with brief, unpredictable periods of solar radiation, and occurred most rapidly in species with hairy, corrugated leaves and darkly pigmented, densely packed inflorescences. This is the first evidence that floral and leaf heating occurs in sub-Antarctic megaherbs, and suggests that leaf hairiness, flower colour and shape could provide thermal benefits like those seen in tropical alpine megaherbs
    corecore