346 research outputs found

    A reduction in long-term spatial memory persists after discontinuation of peripubertal GnRH agonist treatment in sheep

    Get PDF
    Chronic gonadotropin-releasing hormone agonist (GnRHa) administration is used where suppression of hypothalamic-pituitary-gonadal axis activity is beneficial, such as steroid-dependent cancers, early onset gender dysphoria, central precocious puberty and as a reversible contraceptive in veterinary medicine. GnRH receptors, however, are expressed outside the reproductive axis, e.g. brain areas such as the hippocampus which is crucial for learning and memory processes. Previous work, using an ovine model, has demonstrated that long-term spatial memory is reduced in adult rams (45 weeks of age), following peripubertal blockade of GnRH signaling (GnRHa: goserelin acetate), and this was independent of the associated loss of gonadal steroid signaling. The current study investigated whether this effect is reversed after discontinuation of GnRHa-treatment. The results demonstrate that peripubertal GnRHa-treatment suppressed reproductive function in rams, which was restored after cessation of GnRHa-treatment at 44 weeks of age, as indicated by similar testes size (relative to body weight) in both GnRHa-Recovery and Control rams at 81 weeks of age. Rams in which GnRHa-treatment was discontinued (GnRHa-Recovery) had comparable spatial maze traverse times to Controls, during spatial orientation and learning assessments at 85 and 99 weeks of age. Former GnRHa-treatment altered how quickly the rams progressed beyond a specific point in the spatial maze at 83 and 99 weeks of age, and the direction of this effect depended on gonadal steroid exposure, i.e. GnRHa-Recovery rams progressed quicker during breeding season and slower during non-breeding season, compared to Controls. The long-term spatial memory performance of GnRHa-Recovery rams remained reduced (P < 0.05, 1.5-fold slower) after discontinuation of GnRHa, compared to Controls. This result suggests that the time at which puberty normally occurs may represent a critical period of hippocampal plasticity. Perturbing normal hippocampal formation in this peripubertal period may also have long lasting effects on other brain areas and aspects of cognitive function

    Spatial memory is impaired by peripubertal GnRH agonist treatment and testosterone replacement in sheep

    Get PDF
    Chronic gonadotropin-releasing hormone agonist (GnRHa) is used therapeutically to block activity within the reproductive axis through down-regulation of GnRH receptors within the pituitary gland. GnRH receptors are also expressed in non-reproductive tissues, including areas of the brain such as the hippocampus and amygdala. The impact of long-term GnRHa-treatment on hippocampus-dependent cognitive functions, such as spatial orientation, learning and memory, is not well studied, particularly when treatment encompasses a critical window of development such as puberty. The current study used an ovine model to assess spatial maze performance and memory of rams that were untreated (Controls), had both GnRH and testosterone signaling blocked (GnRHa-treated), or specifically had GnRH signaling blocked (GnRHa-treated with testosterone replacement) during the peripubertal period (8, 27 and 41 weeks of age). The results demonstrate that emotional reactivity during spatial tasks was compromised by the blockade of gonadal steroid signaling, as seen by the restorative effects of testosterone replacement, while traverse times remained unchanged during assessment of spatial orientation and learning. The blockade of GnRH signaling alone was associated with impaired retention of long-term spatial memory and this effect was not restored with the replacement of testosterone signaling. These results indicate that GnRH signaling is involved in the retention and recollection of spatial information, potentially via alterations to spatial reference memory, and that therapeutic medical treatments using chronic GnRHa may have effects on this aspect of cognitive function

    Building Capacity for Implementation Science in Precision Health and Society: Development of a Course for Professional and Graduate Students in Pharmacy

    Get PDF
    Training in the field of implementation science is critical for future pharmacists and pharmaceutical scientists to successfully implement precision health interventions in pharmacy practice. We developed an elective course for second- and third-year students at the UNC Eshelman School of Pharmacy to develop foundational knowledge in implementation science with a focus on precision health implementation. The eight-week course used a flipped classroom format featuring lecture videos, suggested readings, quizzes, guest lectures from experts, case studies, and a group project. We evaluated course quality through class participation, a pre- and post-test on course content, and a mixed-methods survey completed by the students. Overall engagement in in the course was high and students demonstrated significant improvement in understanding of implementation science and precision health. Strengths of the course as identified by students were the use of expert guest speakers, pre-class lectures, and case study exercises, while the ordering of content and improved connection between content and guest lectures were identified as areas for improvement. In conclusion, the elective course was well-received and meets a critical need in the field of pharmacy to build implementation science capacity. Future work is needed to expand and refine education for the implementation of precision health for pharmacy professionals

    Validating criteria for identifying core concepts using many-facet rasch measurement

    Get PDF
    Introduction: Core concepts are foundational, discipline-based ideas considered necessary for students to learn, remember, understand, and apply. To evaluate the extent to which a concept is “core,” experts often rate concepts using various criteria, such as importance, complexity, and timeliness. However, there is a lack of validity evidence for core concepts criteria. Methods: Using a three-facet Many-Facet Rasch Measurement (MFRM) model, we analyzed 7,558 ratings provided by 21 experts/raters for 74 pharmacology core concepts using five criteria measured on a five-point scale. Results: All of the criteria had Infit or Outfit MnSq values within the expected range (0.5 < MnSq < 1.7), suggesting the criteria contained an acceptable amount of variability; a reliability index of approximately 1.00 suggested that the criteria were reliably separated with a high degree of confidence. The rating scale Outfit MnSq statistics also fell within the 0.5–1.7 model fit limits; the “average measure” and “Rasch-Andrich thresholds” increased in magnitude as the rating scale categories increased, suggesting that core concepts with higher ratings were in fact meeting the criteria more convincingly than those with lower ratings. Adjusting expert ratings using the MFRM facets (e.g., rater severity) resulted in reorganization of core concepts rankings. Conclusion: This paper is a novel contribution to core concepts research and is intended to inform other disciplines seeking to develop, implement, and refine core concepts within the biomedical sciences and beyond

    Cognitive Apprenticeship in STEM Graduate Education: A Qualitative Review of the Literature

    Get PDF
    The future is dependent on the STEM graduate education system, emphasizing the importance of STEM graduate programs in producing highly trained expert researchers. The cognitive apprenticeship (CA) framework provides guidance to experts (i.e., faculty) on how to explicate their knowledge through the creation of learning opportunities that foster and support students in developing expertise in a particular discipline. This review examines the current landscape of research focused on the use of the CA framework in STEM graduate education. The research suggests the CA framework is a useful and effective model for supporting faculty in cultivating rich learning opportunities for STEM graduate students

    Increasing access to the profession: Admissions lessons learned from the pandemic

    Get PDF
    Introduction: The disruptions induced by the COVID-19 pandemic have forced quick and significant changes to recruitment and admissions practices in colleges of pharmacy. This process has helped to identify barriers and challenges for prospective students. At the University of North Carolina Eshelman School of Pharmacy, some changes were already under consideration prior to the pandemic, such as moving to test-optional admissions and allowing remote interviews, while new considerations included offering the entire recruitment and admissions process remotely. Methods: In 2020–2021, the decision was made to move to test-optional admissions. A separate decision was made to conduct interviews remotely. Data from the admission cycle were collected from the Pharmacy College Application Service as part of the standard admissions process and exported for analysis. Descriptive statistics (mean ± SD) were used. Results: Completed applications increased by 59.1% in 2020–2021 from the previous year. Applications increased by 9.8% from underrepresented students, by 6.2% from those with a bachelor's degree, and by 8.4% by out of state students. Other admissions metrics, such as the mean grade point average (3.50) and mean Pharmacy College Admissions Test composite percentile (88%), did not change. Conclusions: The COVID-19 pandemic experience validated our perspective that we must continue to embrace change and seize opportunities to reduce barriers for prospective students to improve access to the profession. The changes that this pandemic has necessitated may help to close the gaps in accessing health professions education. © 2022 Elsevier Inc

    Developing evidence-based resources for evaluating postgraduate trainees in the biomedical sciences

    Get PDF
    Postgraduate trainees elevate the academic strength of institutions by conducting research, promoting innovation, securing grant funding, training undergraduate students, and building alliances. Rigorous and systematic program evaluation can help ensure that postgraduate training programs are achieving the program’s intended outcomes. The purpose of this project was to develop evidence-based evaluation tools that could be shared across federally funded biomedical training programs to enhance program evaluation capacity. This manuscript describes the evidence-based process used to determine program evaluation needs of these programs at a research-intensive university. Using a multi-phased sequential exploratory mixed methods approach, data were collected from trainees, employers, leaders, and program directors. Data analyses included document analysis of program plans, inductive coding of focus groups and interviews, and descriptive analysis of surveys. Two overarching categories–Trainee Skills and Program Characteristics—were identified including six themes each. Program directors prioritized communication, social and behavioral skills, and collaboration as the trainee skills that they needed the most help evaluating. Furthermore, program directors prioritized the following program characteristics as those that they needed the most help evaluating: training environment, trainee outcomes, and opportunities offered. Surveys, interview scripts, and related resources for the categories and themes were developed and curated on a publicly available website for program directors to use in their program evaluations

    Faculty experiences and motivations in design thinking teaching and learning

    Get PDF
    Introduction: Design thinking (DT) is a creative, iterative approach to generating solutions that are desirable, feasible, and viable. Given its role in fostering creativity and innovation, a growing number of higher education instructors are teaching DT. Exploring how and what instructors know about DT and why they might teach it could provide critical insight into the ways in which DT is operationalized in higher education teaching and learning. Materials and methods: A convergent parallel mixed methods design was used for data collected from online surveys administered to faculty teaching DT. The survey included items about DT practices, outcomes from DT, demographic characteristics, and course characteristics. Five open-text survey items queried participants about their definition of DT, why they teach DT, and what additional outcomes they observed. Descriptive statistics were used to analyze quantitative items and thematic analysis was used to analyze qualitative items. Results: Participants (n = 49) represented various academic ranks, disciplines, types of institutions, and geographic locations. Analyses indicated clear congruence between quantitative and qualitative data. Definitions of DT aligned with well-known models of DT. Motivations for teaching DT included the promotion of personal development, DT proficiency, impact, and interpersonal skill development. Other positive student outcomes observed included increases in enthusiasm, self-awareness, empowerment, optimism, and a sense of belonging. Negative student outcomes included time constraints, teamwork conflicts, and student frustration. Conclusion: Faculty believe that DT leads to highly valuable social innovation skill sets for students. This cross-institutional, multi-disciplinary study provides critical insight into faculty experiences and motivations for teaching DT, offering various strategies for instructors and institutions interested in fostering the uptake of DT within higher education

    Reflections and Experiences of a Co-Researcher involved in a Renal Research Study

    Get PDF
    Background Patient and Public Involvement (PPI) is seen as a prerequisite for health research. However, current Patient and public involvement literature has noted a paucity of recording of patient and public involvement within research studies. There have been calls for more recordings and reflections, specifically on impact. Renal medicine has also had similar criticisms and any reflections on patient and public involvement has usually been from the viewpoint of the researcher. Roles of patient and public involvement can vary greatly from sitting on an Advisory Group to analysing data. Different PPI roles have been described within studies; one being a co-researcher. However, the role of the co-researcher is largely undefined and appears to vary from study to study. Methods The aims of this paper are to share one first time co-researcher's reflections on the impact of PPI within a mixed methods (non-clinical trial) renal research study. A retrospective, reflective approach was taken using data available to the co-researcher as part of the day-to-day research activity. Electronic correspondence and documents such as meeting notes, minutes, interview thematic analysis and comments on documents were re-examined. The co-researcher led on writing this paper. Results This paper offers a broad definition of the role of the co-researcher. The co-researcher reflects on undertaking and leading on the thematic analysis of interview transcripts, something she had not previously done before. The co-researcher identified a number of key themes; the differences in time and responsibility between being a coresearcher and an Advisory Group member; how the role evolved and involvement activities could match the co-researchers strengths (and the need for flexibility); the need for training and support and lastly, the time commitment. It was also noted that it is preferable that a co-researcher needs to be involved from the very beginning of the grant application. Conclusions The reflections, voices and views of those undertaking PPI has been largely underrepresented in the literature. The role of co-researcher was seen to be rewarding but demanding, requiring a large time commitment. It is hoped that the learning from sharing this experience will encourage others to undertake this role, and encourage researchers to reflect on the needs of those involved.Peer reviewedFinal Published versio

    Synthesis effects on the magnetic and superconducting properties of RuSr2GdCu2O8

    Full text link
    A systematic study on the synthesis of the Ru-1212 compound by preparing a series of samples that were annealed at increasing temperatures and then quenched has been performed. It results that the optimal temperature for the annealing lies around 1060-1065 C; a further temperature increase worsens the phase formation. Structural order is very important and the subsequent grinding and annealing improves it. Even if from the structural point of view the samples appear substantially similar, the physical characterization highlight great differences both in the electrical and magnetic properties related to intrinsic properties of the phase as well as to the connection between the grains as inferred from the resistive and the Curie Weiss behaviour at high temperature as well as in the visibility of ZFC anf FC magnetic signals.Comment: 17 pages, 12 figures. Proc. Int. Workshop " Ruthenate and rutheno-cuprate materials: theory and experiments", Vietri, October 2001. To be published on LNP Series, Springer Verlag, Berlin, C. Noce, A. Vecchione, M. Cuoco, A. Romano Eds, 200
    • …
    corecore