728 research outputs found

    Stability of Transparent Spherically Symmetric Thin Shells and Wormholes

    Get PDF
    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations.Comment: 12 pages, 7 figures, revtex. Final form to appear in Phys. Rev.

    Correction

    Get PDF

    Food and fitness: associations between crop yields and life-history traits in a longitudinally monitored pre-industrial human population

    Get PDF
    Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources

    Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe

    Full text link
    Recently, a Hamilton-Jacobi method beyond semiclassical approximation in black hole physics was developed by \emph{Banerjee} and \emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is shown that all the higher order quantum corrections in the single particle action are proportional to the usual semiclassical contribution. The corrections to the Hawking-like temperature and entropy of apparent horizon for FRW universe are also obtained. In the corrected entropy, the area law involves logarithmic area correction together with the standard inverse power of area term.Comment: 10 pages, no figures, comments are welcome; v2: references added and some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We thank Dr.Elias Vagenas for pointing out a defect of our pape

    Exceptional chemotherapy response in metastatic colorectal cancer associated with hyper-indel-hypermutated cancer genome and comutation of POLD1 and MLH1

    Get PDF
    Purpose A 73-year-old woman with metastatic colon cancer experienced a complete response to chemotherapy with dose-intensified irinotecan that has been durable for 5 years.Wesequenced her tumor and germ line DNA and looked for similar patterns in publicly available genomic data from patients with colorectal cancer. Patients and Methods Tumor DNA was obtained from a biopsy before therapy, and germ line DNA was obtained from blood. Tumor and germline DNA were sequenced using a commercial panel with approximately 250 genes. Whole-genome amplification and exome sequencing were performed for POLE and POLD1. A POLD1 mutation was confirmed by Sanger sequencing. The somatic mutation and clinical annotation data files from the colon (n = 461) and rectal (n = 171) adenocarcinoma data sets were downloaded from The Cancer Genome Atlas data portal and analyzed for patterns of mutations and clinical outcomes in patients withPOLE- and/orPOLD1- mutated tumors. Results The pattern of alterations included APC biallelic inactivation and microsatellite instability high (MSI-H) phenotype, with somatic inactivation of MLH1 and hypermutation (estimated mutation rate > 200 per megabase). The extremely high mutation rate led us to investigate additional mechanisms for hypermutation, including loss of function of POLE. POLE was unaltered, but a related gene not typically associated with somatic mutation in colon cancer, POLD1, had a somatic mutation c.2171G > A[p.Gly724Glu]. Additionally, we noted that the high mutation rate was largely composed of dinucleotide deletions. A similar pattern of hypermutation (dinucleotide deletions, POLD1 mutations, MSI-H) was found in tumors from The Cancer Genome Atlas. Conclusion POLD1 mutation with associated MSI-H and hyper-indel-hypermutated cancer genome characterizes a previously unrecognized variant of colon cancer that was found in this patient with an exceptional response to chemotherapy

    Cosmological equations and Thermodynamics on Apparent Horizon in Thick Braneworld

    Full text link
    We derive the generalized Friedmann equation governing the cosmological evolution inside the thick brane model in the presence of two curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two effective four-dimensional reductions of the Friedmann equation in some limits and demonstrate that they can be rewritten as the first law of thermodynamics on the apparent horizon of thick braneworld.Comment: 25 pages, no figure, a definition corrected, several references added, more motivation and discussio

    Comprehensive molecular characterization of urachal adenocarcinoma reveals commonalities with colorectal cancer, including a hypermutable phenotype

    Get PDF
    Purpose Urachal adenocarcinoma is a rare type of primary bladder adenocarcinoma that comprises less than 1% of all bladder cancers. The low incidence of urachal adenocarcinomas does not allow for an evidence-based approach to therapy. Transcriptome profiling of urachal adenocarcinomas has not been previously reported.Wehypothesized that an in-depth molecular understanding of urachal adenocarcinoma would uncover rational therapeutic strategies. Patients and Methods We performed targeted exon sequencing and global transcriptome profiling of 12 urachal tumors to generate a comprehensive molecular portrait of urachal adenocarcinoma. A single patient with an MSH6 mutation was treated with the anti-programmed death-ligand 1 antibody, atezolizumab. Results Urachal adenocarcinoma closely resembles colorectal cancer at the level of RNA expression, which extends previous observations that urachal tumors harbor genomic alterations that are found in colorectal adenocarcinoma. A subset of tumors was found to have alterations in genes that are associated with microsatellite instability (MSH2 and MSH6) and hypermutation (POLE).Apatient with anMSH6mutation was treated withimmunecheckpoint blockade, which resulted in stable disease. Conclusion Because clinical trials are next to impossible for patients with rare tumors, precision oncology may be an important adjunct for treatment decisions. Our findings demonstrate that urachal adenocarcinomas molecularly resemble colorectal adenocarcinomas at the level ofRNA expression, are the first report, to our knowledge, of MSH2andMSH6mutations in this disease, and support the consideration of immune checkpoint blockade as a rational therapeutic treatment of this exceedingly rare tumor

    Thermodynamics in f(R)f(R) gravity in the Palatini formalism

    Full text link
    We investigate thermodynamics of the apparent horizon in f(R)f(R) gravity in the Palatini formalism with non-equilibrium and equilibrium descriptions. We demonstrate that it is more transparent to understand the horizon entropy in the equilibrium framework than that in the non-equilibrium one. Furthermore, we show that the second law of thermodynamics can be explicitly verified in both phantom and non-phantom phases for the same temperature of the universe outside and inside the apparent horizon.Comment: 20 pages, no figure, accepted in JCA

    Thermodynamics of cosmological horizons in f(T)f(T) gravity

    Full text link
    We explore thermodynamics of the apparent horizon in f(T)f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T)f(T) as for f(R)f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature of the outside and inside the apparent horizon.Comment: 18 pages, no figure, version accepted for publication in JCA

    Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing

    Get PDF
    Background: Using next-generation sequencing (NGS) to guide cancer therapy has created challenges in analyzing and reporting large volumes of genomic data to patients and caregivers. Specifically, providing current, accurate information on newly approved therapies and open clinical trials requires considerable manual curation performed mainly by human “molecular tumor boards” (MTBs). The purpose of this study was to determine the utility of cognitive computing as performed by Watson for Genomics (WfG) compared with a human MTB. Materials and Methods: One thousand eighteen patient cases that previously underwent targeted exon sequencing at the University of North Carolina (UNC) and subsequent analysis by the UNCseq informatics pipeline and the UNC MTB between November 7, 2011, and May 12, 2015, were analyzed with WfG, a cognitive computing technology for genomic analysis. Results: Using a WfG-curated actionable gene list, we identified additional genomic events of potential significance (not discovered by traditional MTB curation) in 323 (32%) patients. The majority of these additional genomic events were considered actionable based upon their ability to qualify patients for biomarker-selected clinical trials. Indeed, the opening of a relevant clinical trial within 1 month prior to WfG analysis provided the rationale for identification of a new actionable event in nearly a quarter of the 323 patients. This automated analysis took <3 minutes per case. Conclusion: These results demonstrate that the interpretation and actionability of somatic NGS results are evolving too rapidly to rely solely on human curation. Molecular tumor boards empowered by cognitive computing could potentially improve patient care by providing a rapid, comprehensive approach for data analysis and consideration of up-to-date availability of clinical trials. Implications for Practice: The results of this study demonstrate that the interpretation and actionability of somatic next-generation sequencing results are evolving too rapidly to rely solely on human curation. Molecular tumor boards empowered by cognitive computing can significantly improve patient care by providing a fast, cost-effective, and comprehensive approach for data analysis in the delivery of precision medicine. Patients and physicians who are considering enrollment in clinical trials may benefit from the support of such tools applied to genomic data
    • …
    corecore