627 research outputs found

    Quintessence from Shape Moduli

    Full text link
    We show that shape moduli in sub-millimeter extra dimensional scenarios, addressing the gauge hierarchy problem, can dominate the energy density of the universe today. In our scenario, the volume of the extra dimensions is stabilized at a sufficiently high scale to avoid conflicts with nucleosynthesis and solar-system precision gravity experiments, while the shape moduli remain light but couple extremely weakly to brane-localized matter and easily avoid these bounds. Nonlocal effects in the bulk of the extra dimension generate a potential for the shape moduli. The potential has the right form and order of magnitude to account for the present day cosmic acceleration, in a way analogous to models of quintessence as a pseudo Nambu-Goldstone boson.Comment: 8 pages, 1 figur

    Spin diffusion at finite electric and magnetic fields

    Full text link
    Spin transport properties at finite electric and magnetic fields are studied by using the generalized semiclassical Boltzmann equation. It is found that the spin diffusion equation for non-equilibrium spin density and spin currents involves a number of length scales that explicitly depend on the electric and magnetic fields. The set of macroscopic equations can be used to address a broad range of the spin transport problems in magnetic multilayers as well as in semiconductor heterostructure. A specific example of spin injection into semiconductors at arbitrary electric and magnetic fields is illustrated

    A confirmation of agreement of different approaches for scalar gauge-invariant metric perturbations during inflation

    Full text link
    We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations in the framework of a single field inflationary model where the quasi-exponential expansion is driven by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.Comment: Version accepted in EPJC with new title. 11 pages, no figure

    The Detectability of Departures from the Inflationary Consistency Equation

    Full text link
    We study the detectability, given CMB polarization maps, of departures from the inflationary consistency equation, r \equiv T/S \simeq -5 n_T, where T and S are the tensor and scalar contributions to the quadrupole variance, respectively. The consistency equation holds if inflation is driven by a slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms in the expansion in slow-roll parameters, 2) quantum loop corrections or 3) multiple fields. Higher-order corrections in the first two slow-roll parameters are undetectably small. Loop corrections are detectable if they are nearly maximal and r \ga 0.1. Large departures (|\Delta n_T| \ga 0.1) can be seen if r \ga 0.001. High angular resolution can be important for detecting non-zero r+5n_T, even when not important for detecting non-zero r.Comment: 7 pages, 4 figures, submitted to PR

    Percolation model for structural phase transitions in Li1x_{1-x}Hx_xIO3_3 mixed crystals

    Full text link
    A percolation model is proposed to explain the structural phase transitions found in Li1x_{1-x}Hx_xIO3_3 mixed crystals as a function of the concentration parameter xx. The percolation thresholds are obtained from Monte Carlo simulations on the specific lattices occupied by lithium atoms and hydrogen bonds. The theoretical results strongly suggest that percolating lithium vacancies and hydrogen bonds are indeed responsible for the solid solution observed in the experimental range 0.22<x<0.360.22 < x < 0.36.Comment: 4 pages, 2 figure

    Reionization by active sources and its effects on the cosmic microwave background

    Get PDF
    We investigate the possible effects of reionization by active sources on the cosmic microwave background. We concentrate on the sources themselves as the origin of reionization, rather than early object formation, introducing an extra period of heating motivated by the active character of the perturbations. Using reasonable parameters, this leads to four possibilities depending on the time and duration of the energy input: delayed last scattering, double last scattering, shifted last scattering and total reionization. We show that these possibilities are only very weakly constrained by the limits on spectral distortions from the COBE FIRAS measurements. We illustrate the effects of these reionization possibilities on the angular power spectrum of temperature anisotropies and polarization for simple passive isocurvature models and simple coherent sources, observing the difference between passive and active models. Finally, we comment on the implications of this work for more realistic active sources, such as causal white noise and topological defect models. We show for these models that non-standard ionization histories can shift the peak in the CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version accepted for publication in Phys. Rev.

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    Full text link
    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.

    The Primordial Perturbation Spectrum from Various Expanding and Contracting Phases

    Full text link
    In this paper, focusing on the case of single scalar field, we discuss various expanding and contracting phases generating primordial perturbations, and study the relation between the primordial perturbation spectrum from these phases and the parameter w of state equation in details. Furthermore, we offer an interesting classification for the primordial perturbation spectrum from various phases, which may have important implications for building an early universe scenario embedded in possible high energy theories.Comment: 5 pages, 3 eps figure
    corecore