29 research outputs found

    Translational studies in the complex role of neurotransmitter systems in anxiety and anxiety disorders

    Get PDF
    Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.</p

    Phenotyping the serotonin transporter knockout rat: a behavioural, pharmacological and physiological approach. A new animal model of human serotonergic disorders.

    Get PDF
    Contains fulltext : 71034.pdf (publisher's version ) (Open Access)RU Radboud Universiteit Nijmegen, 27 november 2008Promotor : Cools, A.R. Co-promotor : Ellenbroek, A.A.160 p

    Profiling for Progress: Learner autonomy in writing skills development

    No full text
    Item does not contain fulltex

    Knockout and mutant rats

    No full text
    Contains fulltext : 83323.pdf (Publisher’s version ) (Closed access

    Blockade of dopamine, but not noradrenaline, transporters produces hyperthermia in rats that lack serotonin transporters.

    No full text
    Contains fulltext : 88862.pdf (publisher's version ) (Closed access)To investigate whether life-long disturbed serotonin neurotransmission may result in adaptive changes of dopaminergic and noradrenergic systems, effects of drugs on stress-induced hyperthermia were studied in serotonin transporter knockout rats. The noradrenalin transporter blocker atomoxetine was more effective in reducing stress-induced hyperthermia, induced by an injection, in serotonin transporter (SERT) knockout (SERT(-/-)) rats compared to SERT(+/+) rats. The dopamine transporter blocker GBR12909 increased the core body temperature in SERT(-/-) rats, and had no effect on the SERT(+/+) rats. Finally, the noradrenalin transporter together with dopamine transporter blocker bupropion was more effective in decreasing the stress of an injection in SERT(-/-) rats than in SERT(+/+) rats. These data suggest that the sensitivity of dopamine and noradrenalin receptors is changed in serotonin transporter knockout rats. The lack of the serotonin transporter in SERT(-/-) rats might reflect humans with a life-long disturbed serotonin system, making this rat a good model to study possible changes in dopaminergic and noradrenergic systems in psychiatric disorders

    Stress-induced hyperthermia, the serotonin system and anxiety

    No full text

    Stress-induced hyperthermia and basal body temperature are mediated by different 5-HT(1A) receptor populations: a study in SERT knockout rats.

    No full text
    Contains fulltext : 70949.pdf (publisher's version ) (Closed access)Disturbances in the serotonergic system are implicated in many central nervous system disorders. The serotonin transporter (SERT) regulates the serotonin homeostasis in the synapse. We recently developed a rat which lacks the serotonin transporter (SERT(-/-)). It is likely that adaptive changes take place at the level of pre- and postsynaptic 5-HT receptors. Because autonomic responses are often used to measure 5-HT(1A) receptor function, we analysed these responses by examining the effects of a 5-HT(1A) receptor agonist and antagonist under in vivo conditions in the SERT(-/-) rat. Moreover, we studied the effect of a mild stressor on the body temperature (stress-induced hyperthermia) because of the known involvement of 5-HT(1A) receptors in this phenomenon. Results show that core body temperature did not differ between genotypes under basal, non-stressed conditions. Compared to SERT(+/+) rats, stress-induced hyperthermia was reduced in SERT(-/-) rats. The 5-HT(1A) receptor agonist [R(+)-N-(2[4-(2,3-dihydro-2-2-hydroxy-methyl-1,4-benzodioxin-5-yl)-1-piperazininy l]ethyl)-4-fluorobenzoamide HCl (flesinoxan) reduced stress-induced hyperthermia in both genotypes. The flesinoxan-induced hypothermia in SERT(+/+) rats was blocked by the 5-HT(1A) receptor antagonist [N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexane carboxamide 3HCl (WAY100635). Moreover, WAY100635-induced hyperthermia in SERT(-/-), but not in SERT(+/+) rats. In SERT(-/-) rats, WAY100635 completely blocked the flesinoxan-induced reduction of stress-induced hyperthermia. Interestingly, flesinoxan-induced hypothermia was absent in SERT(-/-) rats. It is concluded that the SERT knockout rat reveals that 5-HT(1A) receptors modulating stress-induced hyperthermia belong to a population of receptors that differs from that involved in hypothermia
    corecore