339 research outputs found

    Dilaton black holes in grand canonical ensemble near the extreme state

    Get PDF
    Dilaton black holes with a pure electric charge are considered in a framework of a grand canonical ensemble near the extreme state. It is shown that there exists such a subset of boundary data that the Hawking temperature smoothly goes to zero to an infinite value of a horizon radius but the horizon area and entropy are finite and differ from zero. In string theory the existence of a horizon in the extreme limit is due to the finiteness of a system only.Comment: 8 pages, RevTex 3.0. Presentation improved, discussion on metrics in string theory simplified. To be published in Phys.Rev.

    Event horizon - Magnifying glass for Planck length physics

    Get PDF
    An attempt is made to describe the `thermodynamics' of semiclassical spacetime without specifying the detailed `molecular structure' of the quantum spacetime, using the known properties of blackholes. I give detailed arguments, essentially based on the behaviour of quantum systems near the event horizon, which suggest that event horizon acts as a magnifying glass to probe Planck length physics even in those contexts in which the spacetime curvature is arbitrarily low. The quantum state describing a blackhole, in any microscopic description of spacetime, has to possess certain universal form of density of states which can be ascertained from general considerations. Since a blackhole can be formed from the collapse of any physical system with a low energy Hamiltonian H, it is suggested that when such a system collapses to form a blackhole, it should be described by a modified Hamiltonian of the form Hmod2=A2ln(1+H2/A2)H^2_{\rm mod} =A^2 \ln (1+ H^2/A^2) where A2EP2A^2 \propto E_P^2.I also show that it is possible to construct several physical systems which have the blackhole density of states and hence will be indistinguishable from a blackhole as far as thermodynamic interactions are concerned. In particular, blackholes can be thought of as one-particle excitations of a class of {\it nonlocal} field theories with the thermodynamics of blackholes arising essentially from the asymptotic form of the dispersion relation satisfied by these excitations. These field theoretic models have correlation functions with a universal short distance behaviour, which translates into the generic behaviour of semiclassical blackholes. Several implications of this paradigm are discussed

    On "Non-Geometric" Contribution To The Entropy Of Black Hole Due To Quantum Corrections

    Full text link
    The quantum corrections to the entropy of charged black holes are calculated. The Reissner-Nordstrem and dilaton black holes are considered. The appearance of logarithmically divergent terms not proportional to the horizon area is demonstrated. It is shown that the complete entropy which is sum of classical Bekenstein-Hawking entropy and the quantum correction is proportional to the area of quantum-corrected horizon.Comment: Latex, 9 page

    Black Hole Evaporation in the Presence of a Short Distance Cutoff

    Full text link
    A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency ωcM1\omega_c\gg M^{-1} in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2

    Two-dimensional quantum-corrected black hole in a finite size cavity

    Full text link
    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature THT_{H}, with the contribution from the boundary taken into account. Vacuum polarization outside the shell tend to cool the system. We find that, for the shell to be in the thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of non-zero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., CGHS), where it enables to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability.Comment: 21 pages. In v.2 misprints corrected. To appear in Phys. Rev.

    A Study of Phase Transition in Black Hole Thermodynamics

    Full text link
    This paper deals with five-dimensional black hole solutions in (a) Einstein-Maxwell-Gauss-Bonnet theory with a cosmological constant and (b)Einstein-Yang-Mills-Gauss-Bonnet theory for spherically symmetric space time. In both the cases the possibility of phase transition is examined and it is analyzed whether the phase transition is a Hawking-Page type phase transition or not.Comment: 16 figure

    Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy

    Full text link
    The holographic principle is tested by examining the logarithmic and higher order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ black hole, I find some disagreement in the principle for a holography screen at spatial infinity beyond the leading order, but a holography with the screen at the horizon does not, with an appropriate choice of a period parameter, which has been undetermined at the leading order, in Carlip's horizon-CFT approach for black hole entropy in any dimension. Its higher dimensional generalization is considered to see a universality of the parameter choice. The horizon holography from Carlip's is compared with several other realizations of a horizon holography, including induced Wess-Zumino-Witten model approaches and quantum geometry approach, but none of the these agrees with Carlip's, after clarifications of some confusions. Some challenging open questions are listed finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow are more clearly explained. Careful distingtion between the implications of my results to AdS/CFT and to the holograhic principl

    Thermodynamics of Reissner-Nordstrom-anti-de Sitter black holes in the grand canonical ensemble

    Full text link
    The thermodynamical properties of the Reissner-Nordstr\"om-anti-de Sitter black hole in the grand canonical ensemble are investigated using York's formalism. The black hole is enclosed in a cavity with finite radius where the temperature and electrostatic potential are fixed. The boundary conditions allow us to compute the relevant thermodynamical quantities, e.g. thermal energy, entropy and charge. The stability conditions imply that there are thermodynamically stable black hole solutions, under certain conditions. Instantons with negative heat capacity are also found.Comment: 15 pages, 9 figures, Revtex. Published version. Changes: figures added to tex

    Black Hole Entropy without Brick Walls

    Get PDF
    We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, S=\A/(4G). Our calculation also yields a constant contribution to the black hole entropy, a contribution associated with the one-loop renormalization of higher curvature terms in the gravitational action.Comment: 15 pages, plain LaTex minor additions including some references; version accepted for publicatio
    corecore