172 research outputs found

    TransverseDiff gravity is to scalar-tensor as unimodular gravity is to General Relativity

    Full text link
    Transverse Diffeomorphism (TDiff) theories are well-motivated theories of gravity from the quantum perspective, which are based upon a gauge symmetry principle. The main contribution of this work is to firmly establish a correspondence between TransverseDiff and the better-known scalar-tensor gravity --- in its more general form ---, a relation which is completely analogous to that between unimodular gravity and General Relativity. We then comment on observational aspects of TDiff. In connection with this proof, we derive a very general rule that determines under what conditions the procedure of fixing a gauge symmetry can be equivalently applied before the variational principle leading to the equations of motion, as opposed to the standard procedure, which takes place afterwards; this rule applies to gauge-fixing terms without derivatives.Comment: 10 pages; amsart style; v3: version as appeared in JCAP, redaction improve

    Can the Pioneer anomaly be of gravitational origin? A phenomenological answer

    Full text link
    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension \alpha and declination \delta of Uranus, Neptune and Pluto obtained by processing various data sets with different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular advances of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081. Final version to appear in Foundations of Physic

    Cosmic Censorship, Area Theorem, and Self-Energy of Particles

    Full text link
    The (zeroth-order) energy of a particle in the background of a black hole is given by Carter's integrals. However, exact calculations of a particle's {\it self-energy} (first-order corrections) are still beyond our present reach in many situations. In this paper we use Hawking's area theorem in order to derive bounds on the self-energy of a particle in the vicinity of a black hole. Furthermore, we show that self-energy corrections {\it must} be taken into account in order to guarantee the validity of Penrose cosmic censorship conjecture.Comment: 11 page

    Loop-Generated Bounds on Changes to the Graviton Dispersion Relation

    Get PDF
    We identify the effective theory appropriate to the propagation of massless bulk fields in brane-world scenarios, to show that the dominant low-energy effect of asymmetric warping in the bulk is to modify the dispersion relation of the effective 4-dimensional modes. We show how such changes to the graviton dispersion relation may be bounded through the effects they imply, through loops, for the propagation of standard model particles. We compute these bounds and show that they provide, in some cases, the strongest constraints on nonstandard gravitational dispersions. The bounds obtained in this way are the strongest for the fewest extra dimensions and when the extra-dimensional Planck mass is the smallest. Although the best bounds come for warped 5-D scenarios, for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop can lead to a bound on the graviton speed which is comparable with other constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte

    Conditions for Successful Extended Inflation

    Full text link
    We investigate, in a model-independent way, the conditions required to obtain a satisfactory model of extended inflation in which inflation is brought to an end by a first-order phase transition. The constraints are that the correct present strength of the gravitational coupling is obtained, that the present theory of gravity is satisfactorily close to general relativity, that the perturbation spectra from inflation are compatible with large scale structure observations and that the bubble spectrum produced at the phase transition doesn't conflict with the observed level of microwave background anisotropies. We demonstrate that these constraints can be summarized in terms of the behaviour in the conformally related Einstein frame, and can be compactly illustrated graphically. We confirm the failure of existing models including the original extended inflation model, and construct models, albeit rather contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include extra references, results unchanged, to appear Phys Rev

    Charge conservation and time-varying speed of light

    Get PDF
    It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where cc is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of cc related to baryogenesis are discarded.Comment: 4 page

    Modified gravity without dark matter

    Full text link
    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological successes of MOND and then discuss the various covariant theories that have been proposed as a basis for the idea. I show why these proposals have led inevitably to a multi-field theory. I describe in some detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and discuss its successes and shortcomings. This lecture is primarily pedagogical and directed to those with some, but not a deep, background in General RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School, The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected, references update

    Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers

    Get PDF
    Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including ÎĽ\mu, the mass of the orbiting star, MM, the mass of the central black hole, and JJ, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.Comment: ReVTeX, 16 pages, 5 postscript figure

    Stars and black holes in varying speed of light theories

    Full text link
    We investigate spherically symmetric solutions to a recently proposed covariant and locally Lorentz-invariant varying speed of light theory. We find the metrics and variations in cc associated with the counterpart of black holes, the outside of a star, and stellar collapse. The remarkable novelty is that cc goes to zero or infinity (depending on parameter signs) at the horizon. We show how this implies that, with appropriate parameters, observers are prevented from entering the horizon. Concomitantly stellar collapse must end in a ``Schwarzchild radius'' remnant. We then find formulae for gravitational light deflection, gravitational redshift, radar echo delay, and the precession of the perihelion of Mercury, highlighting how these may differ distinctly from their Einstein counterparts but still evade experimental constraints. The main tell-tale signature of this theory is the prediction of the observation of a different value for the fine structure constant, α\alpha, in spectral lines formed in the surface of stars. We close by mentioning a variety of new classical and quantum effects near stars, such as aging gradients and particle production.Comment: To be published in Phys. Rev.
    • …
    corecore